Description:
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
分析: 一个没有重复的集合,一个目标,怎么选取集合中的元素使其和为目标值,元素可以重复选取,这就是这道题的主要意思。这道和一个经典题目其实是
一个意思: 硬币总共有1,2,5,10,50的面值,问要凑出某某总额,有多少种方法? 这道题目更强,不仅要知道多少种,还要返回所有组合数目。
这道题目算是典型的深搜,先将集合排序,然后按照从小到大的元素来选取,当一个元素选取过了就不再选取了。 一个元素可以选取的次数从0到不大于目标值。
这道题目设置上要保证所有元素都大于0,因为如果有元素小于0,则无法设置终止条件,因为正元素就可以取无限次,因为有负数的存在!
1 class Solution { 2 public: 3 vector<vector<int> > combinationSum(vector<int> &candidates, int target) { 4 sort(candidates.begin(),candidates.end()); 5 findcomb(candidates,target, 0); 6 return result; 7 } 8 void findcomb(vector<int>& data, int target,int use) 9 { 10 if(target==0) 11 { 12 result.push_back(onesample); 13 return; 14 } 15 if(use==data.size()) return; 16 17 int nowvalue = data[use]; 18 int time = target/nowvalue; 19 vector<int> record; 20 21 for(int i=0;i<=time;i++) 22 { 23 record = onesample; 24 for(int j=1;j<=i;j++) 25 { 26 onesample.push_back(nowvalue); 27 } 28 29 findcomb(data,target-i*nowvalue,use+1); 30 onesample = record; 31 } 32 } 33 34 private: 35 vector<int> onesample; 36 vector<vector<int> >result; 37 };