本主要介绍ElasticSearch 和 SpringBoot 的整合 ,对您有帮助的话,点个关注哦
ElastSearch 介绍
- ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。
- Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
解决了什么问题
我们建立一个网站或应用程序,并要添加搜索功能,但是想要完成搜索工作的创建是非常困难的。我们希望搜索解决方案要运行速度快,我们希望能有一个零配置和一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP来索引数据,我们希望我们的搜索服务器始终可用,我们希望能够从一台开始并扩展到数百台,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。因此我们利用Elasticsearch来解决所有这些问题及可能出现的更多其它问题。
具体elasticsearch相关问题可以去elastic中文社区查看。
环境准备
Java版本
:JDK8elasticsearch
: ES 6.8SpringBoot
:2.1.7.RELEASE
1.启动elasticsearch的 *.bat文件。
2.新建项目,pom文件中加入elasticsearch依赖,完整pom如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.7.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.spiritmark.boot</groupId>
<artifactId>ElastSearch-Boot</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>ElastSearch-Boot</name>
<description>elasticsearch</description>
<properties>
<java.version>1.8</java.version>
<testng.version>6.14.2</testng.version>
<spring-cloud-dependencies.version>Greenwich.RELEASE</spring-cloud-dependencies.version>
<kibana-logging-spring-boot-starter.version>1.2.4</kibana-logging-spring-boot-starter.version>
<fastjson.version>1.2.47</fastjson.version>
<alarm-spring-boot-starter.version>1.0.15-SNAPSHOT</alarm-spring-boot-starter.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud-dependencies.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--elasticsearch-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>
<optional>true</optional>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<!--测试-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>${testng.version}</version>
<scope>test</scope>
</dependency>
<!-- 日期处理 -->
<dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
</dependency>
<!--FastJson-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>${fastjson.version}</version>
</dependency>
<!--feign-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
application.yml 配置文件如下:
server:
port: 8080
servlet:
context-path: /search
spring:
application:
name: search
data:
elasticsearch:
cluster-name: my-cluster
cluster-nodes: localhost:9300
jackson:
default-property-inclusion: non_null
logging:
file: application.log
path: .
level:
root: info
com.spiritmark.store.client: DEBUG
index-entity:
configs:
- docCode: store
indexName: store
type: base
documentPath: com.spiritmark.document.StoreDocument
spring.data.elasticsearch.cluster-name
:集群名称
spring.data.elasticsearch.cluster-nodes
:集群节点地址列表,多个节点用英文逗号(,)分隔
创建文档实体映射
创建一个实体类,然后通过注解来声明字段的映射属性。
Spring提供的注解有@Document
、@Id
、@Field
,其中@Document
作用在类,@Id
、@Field
作用在成员变量,@Id
标记一个字段作为id主键。
package com.spiritmark.boot;
import com.spiritmark.document.store.*;
import com.spiritmark.search.annotation.DefinitionQuery;
import com.spiritmark.search.enums.QueryTypeEnum;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;
import java.util.List;
/**
*
* @author SpiritMark
* @date Create at 19:31 2019/8/22
*/
@Document(indexName = "store", type = "base")
@Data
@DefinitionQuery(key = "page", type = QueryTypeEnum.IGNORE)
@DefinitionQuery(key = "size", type = QueryTypeEnum.IGNORE)
@DefinitionQuery(key = "q", type = QueryTypeEnum.FULLTEXT)
public class StoreDocument {
@Id
@DefinitionQuery(type = QueryTypeEnum.IN)
@DefinitionQuery(key = "id", type = QueryTypeEnum.IN)
@Field(type = FieldType.Keyword)
private String id;
/**
* 基础信息
*/
@Field(type = FieldType.Object)
private StoreBaseInfo baseInfo;
/**
* 标签
*/
@Field(type = FieldType.Nested)
@DefinitionQuery(key = "tagCode", mapped = "tags.key", type = QueryTypeEnum.IN)
@DefinitionQuery(key = "tagValue", mapped = "tags.value", type = QueryTypeEnum.AND)
@DefinitionQuery(key = "_tagValue", mapped = "tags.value", type = QueryTypeEnum.IN)
private List<StoreTags> tags;
}
注解详解 :
Spring Data通过注解来声明字段的映射属性,有下面的三个注解:
- @Document 作用在类,标记实体类为文档对象,一般有两个属性
- indexName:对应索引库名称
- type:对应在索引库中的类型
- shards:分片数量,默认5
- replicas:副本数量,默认1
- @Id 作用在成员变量,标记一个字段作为id主键
- @Field 作用在成员变量,标记为文档的字段,并指定字段映射属性:
- type:字段类型,是枚举:FieldType,可以是text、long、short、date、integer、object等
- text:存储数据时候,会自动分词,并生成索引
- keyword:存储数据时候,不会分词建立索引
- Numerical:数值类型,分两类
- 基本数据类型:long、interger、short、byte、double、float、half_float
- 浮点数的高精度类型:scaled_float
需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。 - Date:日期类型
- elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。
- index:是否索引,布尔类型,默认是true
- store:是否存储,布尔类型,默认是false
- analyzer:分词器名称,这里的ik_max_word即使用ik分词器
分析核心 类 ElasticsearchTemplate
ElasticsearchTemplate
提供了四个createIndex()
方法来创建索引,可以根据类的信息自动生成,也可以手动指定indexName和Settings
创建索引源码 :
@Override
public <T> boolean createIndex(Class<T> clazz) {
return createIndexIfNotCreated(clazz);
}
@Override
public boolean createIndex(String indexName) {
Assert.notNull(indexName, "No index defined for Query");
return client.admin().indices().create(Requests.createIndexRequest(indexName)).actionGet().isAcknowledged();
}
@Override
public boolean createIndex(String indexName, Object settings) {
CreateIndexRequestBuilder createIndexRequestBuilder = client.admin().indices().prepareCreate(indexName);
if (settings instanceof String) {
createIndexRequestBuilder.setSettings(String.valueOf(settings), Requests.INDEX_CONTENT_TYPE);
} else if (settings instanceof Map) {
createIndexRequestBuilder.setSettings((Map) settings);
} else if (settings instanceof XContentBuilder) {
createIndexRequestBuilder.setSettings((XContentBuilder) settings);
}
return createIndexRequestBuilder.execute().actionGet().isAcknowledged();
}
@Override
public <T> boolean createIndex(Class<T> clazz, Object settings) {
return createIndex(getPersistentEntityFor(clazz).getIndexName(), settings);
}
删除索引源码
ElasticsearchTemplate
提供了2个deleteIndex()
方法来删除索引
@Override
public <T> boolean deleteIndex(Class<T> clazz) {
return deleteIndex(getPersistentEntityFor(clazz).getIndexName());
}
@Override
public boolean deleteIndex(String indexName) {
Assert.notNull(indexName, "No index defined for delete operation");
if (indexExists(indexName)) {
return client.admin().indices().delete(new DeleteIndexRequest(indexName)).actionGet().isAcknowledged();
}
return false;
}
创建映射源码:
ElasticsearchTemplate
提供了三个putMapping()
方法来创建映射
@Override
public <T> boolean putMapping(Class<T> clazz) {
if (clazz.isAnnotationPresent(Mapping.class)) {
String mappingPath = clazz.getAnnotation(Mapping.class).mappingPath();
if (!StringUtils.isEmpty(mappingPath)) {
String mappings = readFileFromClasspath(mappingPath);
if (!StringUtils.isEmpty(mappings)) {
return putMapping(clazz, mappings);
}
} else {
LOGGER.info("mappingPath in @Mapping has to be defined. Building mappings using @Field");
}
}
ElasticsearchPersistentEntity<T> persistentEntity = getPersistentEntityFor(clazz);
XContentBuilder xContentBuilder = null;
try {
ElasticsearchPersistentProperty property = persistentEntity.getRequiredIdProperty();
xContentBuilder = buildMapping(clazz, persistentEntity.getIndexType(),
property.getFieldName(), persistentEntity.getParentType());
} catch (Exception e) {
throw new ElasticsearchException("Failed to build mapping for " + clazz.getSimpleName(), e);
}
return putMapping(clazz, xContentBuilder);
}
@Override
public <T> boolean putMapping(Class<T> clazz, Object mapping) {
return putMapping(getPersistentEntityFor(clazz).getIndexName(), getPersistentEntityFor(clazz).getIndexType(),
mapping);
}
@Override
public boolean putMapping(String indexName, String type, Object mapping) {
Assert.notNull(indexName, "No index defined for putMapping()");
Assert.notNull(type, "No type defined for putMapping()");
PutMappingRequestBuilder requestBuilder = client.admin().indices().preparePutMapping(indexName).setType(type);
if (mapping instanceof String) {
requestBuilder.setSource(String.valueOf(mapping), XContentType.JSON);
} else if (mapping instanceof Map) {
requestBuilder.setSource((Map) mapping);
} else if (mapping instanceof XContentBuilder) {
requestBuilder.setSource((XContentBuilder) mapping);
}
return requestBuilder.execute().actionGet().isAcknowledged();
}
测试
@Test
public void testCreate() {
System.out.println(elasticsearchTemplate.createIndex(StoreDocument.class));
System.out.println(elasticsearchTemplate.putMapping(StoreDocument.class));
}
Repository 接口
另一种则是通过Repository接口。Spring提供的ES的Repository接口为
ElasticsearchCrudRepository
,所以我们就可以直接定义额新的接口,然后实现ElasticsearchCrudRepository
即可:
package com.spiritmark.boot;
import com.taoche.document.StoreDocument;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
/**
* 门店Repository
* @author 李锋镝
* @date Create at 09:30 2019/8/23
*/
public interface StoreRepository extends ElasticsearchRepository<StoreDocument, String> { }
测试
@Test
public void testSave() {
StoreDocument storeDocument = new StoreDocument();
storeDocument.setId("1");
StoreBaseInfo baseInfo = new StoreBaseInfo();
baseInfo.setStoreId("1");
baseInfo.setCreatedTime(DateTime.now());
storeDocument.setBaseInfo(baseInfo);
storeRepository.save(storeDocument);
}
查询
ES的主要功能就是查询,
ElasticsearchRepository
也提供了基本的查询接口,比如findById()、findAll()、findAllById()、search()等方法;当然也可以使用Spring Data提供的另外一个功能:Spring Data JPA——通过方法名创建查询,当然需要遵循一定的规则,比如你的方法名叫做findByTitle(),那么它就知道你是根据title查询,然后自动帮你完成,这里就不仔细说了。
上边说的基本能满足一般的查询,复杂一点的查询就无能为力了,这就需要用到自定义查询,这里可以查看我的另一篇博客SpringBoot使用注解的方式构建Elasticsearch查询语句,实现多条件的复杂查询,这里边有详细的说明。