zoukankan      html  css  js  c++  java
  • simrank python实现

    1、数据

    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    pc,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,hp.com
    camera,bestbuy.com
    camera,bestbuy.com
    camera,bestbuy.com
    camera,bestbuy.com
    camera,bestbuy.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,hp.com
    digital camera,bestbuy.com
    digital camera,bestbuy.com
    digital camera,bestbuy.com
    digital camera,bestbuy.com
    digital camera,bestbuy.com
    digital camera,bestbuy.com
    digital camera,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    tv,bestbuy.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,teleflora.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    flower,orchids.com
    View Code

    2、simrank 的python实现

    import numpy as np 
    from numpy import matrix
    
    with open('sample1 (1).txt','r') as log_fp:
        logs = [log.strip() for log in log_fp.readlines()]
        # print(logs)
    logs_tuple = [tuple(log.split(",")) for log in logs]
    # print (logs_tuple)
    
    queries = list(set([log[0] for log in logs_tuple]))
    # print(queries)    #['digital camera', 'flower', 'pc', 'camera', 'tv']
    ads = list(set([log[1] for log in logs_tuple]))
    # print(ads)#['hp.com', 'teleflora.com', 'bestbuy.com', 'orchids.com']
    
    graph = np.matrix(np.zeros([len(queries),len(ads)]))
    # print(graph)   #6行4列的0矩阵
    
    for log in logs_tuple:
        query = log[0]
        ad = log[1]
        q_i = queries.index(query)
        a_j = ads.index(ad)
        graph[q_i,a_j] +=1
    print(graph)
    
    query_sim = matrix(np.identity(len(queries)))
    print(query_sim)
    ad_sim = matrix(np.identity(len(ads)))
    print(ad_sim)
    
    def get_ads_num(query):
        q_i = queries.index(query)
        return graph[q_i]
    
    def get_queries_num(ad):
        a_j = ads.index(ad)
        return graph.transpose()[a_j]
    
    def get_ads(query):
        series = get_ads_num(query).tolist()[0]
        return [ads[x] for x in range(len(series)) if series[x] > 0]
    
    def get_queries(ad):
        series = get_queries_num(ad).tolist()[0]
        return [queries[x] for x in range(len(series)) if series[x] > 0]
    
    
    def query_simrank(q1,q2,c):
        if q1 == q2 :
            return 1
        prefix = c/(get_ads_num(q1).sum() *get_ads_num(q2).sum())
        postfix = 0
        for ad_i in get_ads(q1):
            for ad_j in get_ads(q2):
                i = ads.index(ad_i)
                j = ads.index(ad_j)
                postfix += ad_sim[i,j]
        return prefix*postfix
    
    
    def ad_simrank(a1,a2,c):
        if a1 == a2 :
            return 1
        prefix = c/(get_queries_num(a1).sum()*get_queries_num(a2).sum())
        postfix = 0
        for query_i in get_queries(a1):
            for query_j in get_queries(a2):
                i = queries.index(query_i)
                j = queries.index(query_j)
                postfix += query_sim[i,j]
        return prefix*postfix
    
    
    def simrank(c=0.8,times = 1):
        global query_sim,ad_sim
    
        for run in range(times):
            new_query_sim = matrix(np.identity(len(queries)))
            for qi in queries:
                for qj in queries:
                    i = queries.index(qi)
                    j = queries.index(qj)
                    new_query_sim[i,j] =query_simrank(qi,qj,c)
    
            new_ad_sim = matrix(np.identity(len(ads)))
            for ai in ads:
                for aj in ads :
                    i = ads.index(ai)
                    j = ads.index(aj)
                    new_ad_sim[i,j] =ad_simrank(ai,aj,c)
    
            query_sim = new_query_sim
            ad_sim = new_ad_sim
    
    
    if __name__ == '__main__':
        print (queries)
        print(ads)
        simrank()
        print(query_sim)
        print(ad_sim)

    [[15.  0.  0.  0.]
     [ 0.  0. 10.  0.]
     [ 5.  0. 20.  0.]
     [ 7.  0. 30.  0.]
     [ 0. 16.  0. 15.]]
    [[
    1. 0. 0. 0. 0.] [0. 1. 0. 0. 0.] [0. 0. 1. 0. 0.] [0. 0. 0. 1. 0.] [0. 0. 0. 0. 1.]]
    [[
    1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]]
    [
    'tv', 'pc', 'camera', 'digital camera', 'flower']
    [
    'bestbuy.com', 'teleflora.com', 'hp.com', 'orchids.com']
    [[
    1. 0. 0.00213333 0.00144144 0. ] [0. 1. 0.0032 0.00216216 0. ] [0.00213333 0.0032 1. 0.00172973 0. ] [0.00144144 0.00216216 0.00172973 1. 0. ] [0. 0. 0. 0. 1. ]]
    [[
    1.00000000e+00 0.00000000e+00 9.87654321e-04 0.00000000e+00] [0.00000000e+00 1.00000000e+00 0.00000000e+00 3.33333333e-03] [9.87654321e-04 0.00000000e+00 1.00000000e+00 0.00000000e+00] [0.00000000e+00 3.33333333e-03 0.00000000e+00 1.00000000e+00]]
  • 相关阅读:
    【Python-虫师】自动化测试模型--参数化
    【Loadrunner】【浙江移动项目手写代码】代码备份
    虫师的性能测试思想html网页学习
    Loadrunner之https协议录制回放报错如何解决?(九)
    【Python虫师】多窗口定位
    【虫师讲Selenium+Python】第三讲:操作测试对象
    【虫师Python】第二讲:元素定位
    【小甲鱼】【Python】正则表达式(三)
    【小甲鱼】【Python】正则表达式(二)
    js提交数据时需判断是点击事件还是回车键
  • 原文地址:https://www.cnblogs.com/spp666/p/11821700.html
Copyright © 2011-2022 走看看