zoukankan      html  css  js  c++  java
  • [ACM] hdu 2544 最短路(dijkstra算法)

    最短路

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 25941    Accepted Submission(s): 11174


    Problem Description
    在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

     


     

    Input
    输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
    输入保证至少存在1条商店到赛场的路线。
     


     

    Output
    对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
     


     

    Sample Input
    2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
     


     

    Sample Output
    3 2
     


     

    Source

    解题思路:

    最短路问题dijkstra算法终于算比较理解了,核心思想为每次找d[i]最小的那个顶点,从该顶点向外扩充,更新其它顶点的d[i]值.

    注意:初始化问题,在输入边的权值之前不要忘了对w[i][j](保存权值)数组初始化为inf(最大值),d[start]为0,其他为inf。

    代码:

    //**************************************
    //dijkstra最短路算法适用于无向图和有向图,
    //必须保证边的权值为正值,如果有负值,则
    //计算最短路不能用该算法。核心思想为每次
    //找d[i]最小的那个顶点,从该顶点向外扩充,
    //更新其它顶点的d[i]值.
    //**************************************
    
    //本题顶点编号从1开始
    #include <iostream>
    #include <algorithm>
    #include <string.h>
    using namespace std;
    
    const int inf=1<<30;
    bool vis[102];//判断顶点是否被访问过,需要初始化
    int d[102];//保存从起点到编号为i的顶点的最短距离d[i]
    int w[102][102];//边的价值,w[from][to]
    
    int n,m;//n为顶点数,m为边数
    
    void dijkstra(int start)//最短路dijkstra算法
    {
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++)
            d[i]=(i==start?0:inf);//初始化,起点d[start]=0, 其它均为最大值,inf
        for(int i=1;i<=n;i++)
        {
            int x,mini=inf;//x为未访问过的d[i]存在最小值的那个顶点编号,每次都需要找这个顶点,找n次
            for(int y=1;y<=n;y++)
                if(!vis[y]&&d[y]<=mini)
                {
                    mini=d[y];
                    x=y;//两句可以合写为mini=d[x=y];
                }
            vis[x]=1;//找到的顶点被访问过
            for(int y=1;y<=n;y++)
                d[y]=min(d[y],d[x]+w[x][y]);
        }
    }
    
    int main()
    {
        while(cin>>n>>m&&n&&m)
        {
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                w[i][j]=inf;//别忘了在输入边权之前初始化,每条边的距离均为inf最大值,前面d[y]=min(d[y],d[x]+w[x][y]);要用到
            for(int i=1;i<=m;i++)
            {
                int from,to,cost;
                cin>>from>>to>>cost;
                if(w[from][to]>cost)//为了谨慎些,还是判断下
                {
                    w[from][to]=cost;
                    w[to][from]=cost;//无向图
                }
               // w[from][to]=w[to][from]=cost;不判断也可以
            }
            dijkstra(1);
            cout<<d[n]<<endl;
        }
        return 0;
    }
    


     

  • 相关阅读:
    颠覆想象的php解析获取跨域HTML标签
    Win7承载网络配置——让你的手机无线上网吧
    Joomla!备忘手记
    jQuery+PHP+MySQL简单无限级联实现
    js 功能函数集
    PHP POST数据至远程服务器获取信息
    js生成迅雷地址
    强大的jQuery选择器之选定连续多行
    札记 PHP/JS/jQuery/MySQL/CSS/正则/Apache
    php数组一对一替换
  • 原文地址:https://www.cnblogs.com/sr1993/p/3697976.html
Copyright © 2011-2022 走看看