zoukankan      html  css  js  c++  java
  • 时序数据异常检测相关的问题记录

    量化曲线的波动情况,即如何判断曲线是否平滑?

    # 求导,统计数据波动的次数,跟阈值作比较
    def is_fluctuating(series):
        ets = series[-1][0]
        raw = [item[1] for item in series if item[0] >= (ets - 86400)]
        fluctuation = np.diff(raw) > 0
        count = 0
        for idx in range(0, len(fluctuation)-1):
            if fluctuation[idx] != fluctuation[idx+1]:
                count = count + 1
        return count/len(raw) > 0.5
    
    # 指数加权移动平均
    def ewma(series):
        s = pd.Series([ ii[1] for ii in series ])
        ewma = pd.Series.ewm(s, ignore_na=False, min_periods=0, adjust=True, com=2).mean()
        nums = [round(num, 2) for num in ewma.to_list()]
        ewma_series = []
        for idx in range(0, len(series)):
            ewma_series.append([series[idx][0], nums[idx]])
        return ewma_series

    如何判断两条曲线是否"胶着"在一起?

    # 取指定周期的数据做差分
    def check_intersect(timeseries):
        period = 3600
        # Step01 计算之前需要处理数据缺失的问题,避免出现ValueError: operands could not be broadcast together with shapes
        ets = timeseries[-1][0]
        raw_today = [ii[1] for ii in timeseries if ets - period < ii[0] <= ets]
        raw_yesterday = [ii[1] for ii in timeseries if ets - 86400 - period < ii[0] <= ets - 86400]
        raw_week = [ii[1] for ii in timeseries if ets - 86400 * 7 - period < ii[0] <= ets - 86400 * 7]
        if len(raw_today) < 2 or len(raw_yesterday) < 2 or len(raw_week) < 2:
            return False
        granularity = 60 if len(timeseries) > 2305 else 300  # 粒度是1分钟还是5分钟
        count = period / granularity
        while len(raw_today) < count:
            raw_today.append(np.mean(raw_today))
        while len(raw_yesterday) < count:
            raw_yesterday.append(np.mean(raw_yesterday))
        while len(raw_week) < count:
            raw_week.append(np.mean(raw_week))
        # Step02 计算当前数据和历史数据的偏离程度
        arr_today = np.array(raw_today)
        arr_yesterday = np.array(raw_yesterday)
        arr_week = np.array(raw_week)
        t2y = arr_today - arr_yesterday
        t2w = arr_today - arr_week
        percent2y = t2y / arr_today
        percent2w = t2w / arr_today
        threshold = 0.1
        if np.mean(np.abs(percent2y)) < threshold or np.mean(np.abs(percent2w)) < threshold:
            return True
        return False

    判断曲线是否是周期性曲线,并计算出其周期。

    # 傅里叶变换,时域转换为频域。

    作者:Standby一生热爱名山大川、草原沙漠,还有妹子
    出处:http://www.cnblogs.com/standby/

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    实现简易赈灾物资发放登记系统---练习
    数据访问-----ADO.NET 练习2
    数据访问-----ADO.NET 练习1
    面向对象(3)继承
    面向对象(2)
    面向对象(1)
    JavaScript 内容串联 ---Document---四、五和正则表达式。
    JavaScript 内容串联 ---Document
    document--操作相关元素(js简短汇总3)
    js--document对象操作内容(js简短汇总2)
  • 原文地址:https://www.cnblogs.com/standby/p/14661440.html
Copyright © 2011-2022 走看看