zoukankan      html  css  js  c++  java
  • wave数据集的回归曲线

    wave数据集的回归曲线

    import matplotlib.pyplot as plt
    import mglearn
    from scipy import sparse
    import numpy as np
    import matplotlib as mt
    import pandas as pd
    from IPython.display import display
    from sklearn.datasets import load_iris
    import sklearn as sk
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier

    X,y = mglearn.datasets.make_forge()
    print(X)
    print(y)
    mglearn.discrete_scatter(X[:,0],X[:,1],y)
    plt.legend("c1 0","c2 1",loc=4)
    plt.xlabel("first feature")
    plt.ylabel("second feature")
    plt.show()

    X,y = mglearn.datasets.make_wave(n_samples=40)
    print(X)
    print(y)
    plt.plot(X,y,'o')
    plt.show()

    输出:

    [[ 9.96346605  4.59676542]
     [11.0329545  -0.16816717]
     [11.54155807  5.21116083]
     [ 8.69289001  1.54322016]
     [ 8.1062269   4.28695977]
     [ 8.30988863  4.80623966]
     [11.93027136  4.64866327]
     [ 9.67284681 -0.20283165]
     [ 8.34810316  5.13415623]
     [ 8.67494727  4.47573059]
     [ 9.17748385  5.09283177]
     [10.24028948  2.45544401]
     [ 8.68937095  1.48709629]
     [ 8.92229526 -0.63993225]
     [ 9.49123469  4.33224792]
     [ 9.25694192  5.13284858]
     [ 7.99815287  4.8525051 ]
     [ 8.18378052  1.29564214]
     [ 8.7337095   2.49162431]
     [ 9.32298256  5.09840649]
     [10.06393839  0.99078055]
     [ 9.50048972 -0.26430318]
     [ 8.34468785  1.63824349]
     [ 9.50169345  1.93824624]
     [ 9.15072323  5.49832246]
     [11.563957    1.3389402 ]]
    [1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0]
    
    [[-0.75275929]
     [ 2.70428584]
     [ 1.39196365]
     [ 0.59195091]
     [-2.06388816]
     [-2.06403288]
     [-2.65149833]
     [ 2.19705687]
     [ 0.60669007]
     [ 1.24843547]
     [-2.87649303]
     [ 2.81945911]
     [ 1.99465584]
     [-1.72596534]
     [-1.9090502 ]
     [-1.89957294]
     [-1.17454654]
     [ 0.14853859]
     [-0.40832989]
     [-1.25262516]
     [ 0.67111737]
     [-2.16303684]
     [-1.24713211]
     [-0.80182894]
     [-0.26358009]
     [ 1.71105577]
     [-1.80195731]
     [ 0.08540663]
     [ 0.55448741]
     [-2.72129752]
     [ 0.64526911]
     [-1.97685526]
     [-2.60969044]
     [ 2.69331322]
     [ 2.7937922 ]
     [ 1.85038409]
     [-1.17231738]
     [-2.41396732]
     [ 1.10539816]
     [-0.35908504]]
    [-0.44822073  0.33122576  0.77932073  0.03497884 -1.38773632 -2.47196233
     -1.52730805  1.49417157  1.00032374  0.22956153 -1.05979555  0.7789638
      0.75418806 -1.51369739 -1.67303415 -0.90496988  0.08448544 -0.52734666
     -0.54114599 -0.3409073   0.21778193 -1.12469096  0.37299129  0.09756349
     -0.98618122  0.96695428 -1.13455014  0.69798591  0.43655826 -0.95652133
      0.03527881 -2.08581717 -0.47411033  1.53708251  0.86893293  1.87664889
      0.0945257  -1.41502356  0.25438895  0.09398858]

    matplotlib.pyplot.plot()参数详解:

    绘制线条或标记的轴。参数是一个可变长度参数,允许多个X、Y对可选的格式字符串。

    例如,下面的每一个都是合法的:

    plot(x, y)       #plot x, y使用默认的线条样式和颜色

    plot(x, y, 'bo')    #plot x,y用蓝色圆圈标记

    plot(y)    #plot y用x作为自变量

    plot(y, 'r+')      #同上,但是是用红色作为标记

    如果x或y是2维的,那么相应的列将被绘制。

    x、y的任意数,格式可以如下:

    a.plot(x1, y1, 'g^', x2, y2, 'g-')

    默认情况下,每个行被指定一个由“颜色周期”指定的不同颜色。要改变这种行为,可以编辑axes.color_cycle中的rcparam。

    下面的字符用来描述绘制的图形:

    字符

    描述

    '-'

    实线

    '--'

    虚线

    '-.'

    点线

    ':'

    点虚线

    '.'

    ','

    像素

    'o'

    圆形

    'v'

    朝下的三角形

    '^'

    朝上的三角形

    '<'

    朝左的三角形

    '>'

    朝右的三角形

    '1'

    tri_down marker

    '2'

    tri_up marker

    '3'

    tri_left marker

    '4'

    tri_right marker

    's'

    正方形

    'p'

    五角形

    '*'

    星型

    'h'

    1号六角形

    'H'

    2号六角形

    '+'

    +号标记

    'x'

    x号标记

    'D'

    钻石形

    'd'

    小版钻石形

    '|'

    垂直线形

    '_'

    水平线行

    颜色用以下字符表示:

    字符

    颜色

    ‘b’

    蓝色

    ‘g’

    绿色

    ‘r’

    红色

    ‘c’

    青色

    ‘m’

    品红

    ‘y’

    黄色

    ‘k’

    黑色

    ‘w’

    白色

    此外,你可以在很多古怪的方式和精彩的指定颜色,包括完整的名称(绿色的),十六进制字符串(“# 008000”)、RGB、RGBA元组((0,1,0,1))或灰度强度作为一个字符串(‘0.8’)。这些字符串的规格可用于格式化,但以元组的形式只能用作**kwargs。

    线条样式和颜色组合在一个单一的格式字符串中,如在’bo’为蓝色圆圈。

  • 相关阅读:
    UVALive 3938 一道被我WA了的线段树
    批量删除Zen Cart 无图片商品
    zencart加大数据表字段长度
    CSS字体中英文名称对照表
    zencart产品批量表上传后SEO三要素状态以及特价时间修改
    Linux 文件系统
    VMware Tools 安装步骤
    IDEA安装阿里规约插件
    IDEA 中无法使用 EL 表达式
    Redis主从复制
  • 原文地址:https://www.cnblogs.com/starcrm/p/11675651.html
Copyright © 2011-2022 走看看