zoukankan      html  css  js  c++  java
  • 使用协方差矩阵的特征向量PCA来处理数据降维

    取2维特征,方便图形展示

    import matplotlib.pyplot as plt
    from sklearn.decomposition import PCA
    from sklearn.datasets import load_iris
    
    data = load_iris()
    y = data.target
    X = data.data
    pca = PCA(n_components=2)
    reduced_X = pca.fit_transform(X)
    
    red_x, red_y = [], []
    blue_x, blue_y = [], []
    green_x, green_y = [], []
    for i in range(len(reduced_X)):
        if y[i] == 0:
            red_x.append(reduced_X[i][0])
            red_y.append(reduced_X[i][1])
        elif y[i] == 1:
            blue_x.append(reduced_X[i][0])
            blue_y.append(reduced_X[i][1])
        else:
            green_x.append(reduced_X[i][0])
            green_y.append(reduced_X[i][1])
    plt.scatter(red_x, red_y, c='r', marker='x')
    plt.scatter(blue_x, blue_y, c='b', marker='D')
    plt.scatter(green_x, green_y, c='g', marker='.')
    plt.show()

  • 相关阅读:
    身份证的测试用例
    集合
    网易考拉测试面试题整理
    linux基本指令分类
    网络编程
    设计模式
    MySQL中的索引
    MySQL中的事务
    Java判断字符串是否为乱码
    Activiti6.x删除外键
  • 原文地址:https://www.cnblogs.com/starcrm/p/11725376.html
Copyright © 2011-2022 走看看