zoukankan      html  css  js  c++  java
  • ZJOI2002——青蛙的约会(Exgcd)

    描述
    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝着对方那里跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
    我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
    输入
    输入包括多个测试数据。每个测试数据包括一行5个整数x,y,m,n,L,其中x≠y,m、n≠0,L>0。m,n的符号表示了相应的青蛙的前进方向。
    输出
    对于每个测试数据,在单独一行里输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行“Impossible”。
    样例输入
    1 2 3 4 5
    样例输出
    4

    我觉得题意有点问题吧,应该是一起往一个方向跳才对吧

    如果设时间为tt那么

    x+mt=y+nt(modL)x+mt=y+nt(modL)

    即为(nm)t+kL=xy(n-m)t+kL=(x-y)

    套用ExgcdExgcd求出特解后调整至最小正整数解

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    int exgcd(int a,int b,int &x,int &y){
        if(b==0){
            x=1,y=0;return a;
        }
        int d=exgcd(b,a%b,x,y);
        int z=x;x=y,y=z-y*(a/b);
        return d;
    }
    int x,y,l,n,m;
    inline int solve(int a,int b,int c){
        int d=exgcd(a,b,x,y);
        if(c%d)return -1;
        x=x*c/d;
        x=(x%(b/d)+(b/d))%(b/d);
        return x;
    }
    signed main(){
        cin>>x>>y>>m>>n>>l;
        int k=solve(n-m,l,x-y);
        if(k==-1)cout<<"Impossible";
        else cout<<k;
        
    }
    
  • 相关阅读:
    怎么用代码弹回 UITableView 中左滑出来的删除按钮
    android 利用 aapt 解析 apk 得到应用名称 包名 版本号 权限等信息
    Missy
    html5 websocket + node.js 实现网页聊天室
    android 代码混淆示例
    android volley 发送 POST 请求
    android viewpager 拿到当前显示的 fragment 的实例
    android actionbar viewpager 实现类微信主界面布局
    (转)初学Git及简单搭建git服务器和客户端
    error: Cannot find OpenSSL's <evp.h> Mac
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/10366446.html
Copyright © 2011-2022 走看看