zoukankan      html  css  js  c++  java
  • TopicsExtraction with NMF & LDA

    """
    =======================================================================================
    Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
    =======================================================================================
    
    This is an example of applying Non-negative Matrix Factorization
    and Latent Dirichlet Allocation on a corpus of documents and
    extract additive models of the topic structure of the corpus.
    The output is a list of topics, each represented as a list of terms
    (weights are not shown).
    
    The default parameters (n_samples / n_features / n_topics) should make
    the example runnable in a couple of tens of seconds. You can try to
    increase the dimensions of the problem, but be aware that the time
    complexity is polynomial in NMF. In LDA, the time complexity is
    proportional to (n_samples * iterations).
    """
    
    # Author: Olivier Grisel <olivier.grisel@ensta.org>
    #         Lars Buitinck <L.J.Buitinck@uva.nl>
    #         Chyi-Kwei Yau <chyikwei.yau@gmail.com>
    # License: BSD 3 clause
    
    from __future__ import print_function
    from time import time
    
    from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
    from sklearn.decomposition import NMF, LatentDirichletAllocation
    from sklearn.datasets import fetch_20newsgroups
    
    n_samples = 2000
    n_features = 1000
    n_topics = 10
    n_top_words = 20
    
    
    def print_top_words(model, feature_names, n_top_words):
        for topic_idx, topic in enumerate(model.components_):
            print("Topic #%d:" % topic_idx)
            print(" ".join([feature_names[i]
                            for i in topic.argsort()[:-n_top_words - 1:-1]]))
        print()
    
    
    # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics
    # to filter out useless terms early on: the posts are stripped of headers,
    # footers and quoted replies, and common English words, words occurring in
    # only one document or in at least 95% of the documents are removed.
    
    print("Loading dataset...")
    t0 = time()
    dataset = fetch_20newsgroups(shuffle=True, random_state=1,
                                 remove=('headers', 'footers', 'quotes'))
    data_samples = dataset.data
    print("done in %0.3fs." % (time() - t0))
    
    # Use tf-idf features for NMF.
    print("Extracting tf-idf features for NMF...")
    tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, #max_features=n_features,
                                       stop_words='english')
    t0 = time()
    tfidf = tfidf_vectorizer.fit_transform(data_samples)
    print("done in %0.3fs." % (time() - t0))
    
    # Use tf (raw term count) features for LDA.
    print("Extracting tf features for LDA...")
    tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features,
                                    stop_words='english')
    t0 = time()
    tf = tf_vectorizer.fit_transform(data_samples)
    print("done in %0.3fs." % (time() - t0))
    
    # Fit the NMF model
    print("Fitting the NMF model with tf-idf features,"
          "n_samples=%d and n_features=%d..."
          % (n_samples, n_features))
    t0 = time()
    nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf)
    exit()
    print("done in %0.3fs." % (time() - t0))
    
    print("
    Topics in NMF model:")
    tfidf_feature_names = tfidf_vectorizer.get_feature_names()
    print_top_words(nmf, tfidf_feature_names, n_top_words)
    
    print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..."
          % (n_samples, n_features))
    lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
                                    learning_method='online', learning_offset=50.,
                                    random_state=0)
    t0 = time()
    lda.fit(tf)
    print("done in %0.3fs." % (time() - t0))
    
    print("
    Topics in LDA model:")
    tf_feature_names = tf_vectorizer.get_feature_names()
    print_top_words(lda, tf_feature_names, n_top_words)
    
  • 相关阅读:
    放一个Dynamicinputs corresponding to Dynamicknobs的Node源码
    NDK学习笔记(四):OutputContext机制
    NDK学习笔记(三):DynamicKnobs的机制
    OpenEXR的采样机制
    OpenEXR的读取机制
    OpenEXR的输出机制
    虚拟机中安装centOS及破解nuke的方法
    OpenEXR-2.2.0在Win7 x64系统下的安装方法
    NDK学习笔记(二)
    NDK学习笔记(Add.cpp注释)(一)
  • 原文地址:https://www.cnblogs.com/stevenlk/p/6507043.html
Copyright © 2011-2022 走看看