zoukankan      html  css  js  c++  java
  • poj 2891 中国剩余定理

    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 20640   Accepted: 6946

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    题意 给出k个同余方程组:x mod ai = ri。求x的最小正值。如果不存在这样的x,那么输出-1.不满足所有的ai互质。

    解析 https://blog.csdn.net/litble/article/details/75807726 中国扩展剩余定理

     1 #include<stdio.h>
     2 #define pb push_back
     3 #define mp make_pair
     4 #define fi first
     5 #define se second
     6 #define all(a) (a).begin(), (a).end()
     7 #define fillchar(a, x) memset(a, x, sizeof(a))
     8 #define huan printf("
    ");
     9 #define debug(a,b) cout<<a<<" "<<b<<" "<<endl;
    10 using namespace std;
    11 const int maxn=1e5+10,inf=0x3f3f3f3f;
    12 typedef long long ll;
    13 ll chu[maxn],yu[maxn];
    14 ll exgcd(ll a,ll b,ll &x,ll &y)   //&引用符号,修改x,y,函数返回的是a,b的最大公约数
    15 {
    16     if(b==0)
    17     {
    18         x=1;y=0;
    19         return a;
    20     }
    21     ll gcd=exgcd(b,a%b,x,y);            //递归下去
    22     ll temp=x;
    23     x=y;y=temp-a/b*y;
    24     return gcd;
    25 }
    26 ll CRT(int n)//中国剩余定理 除数互质
    27 {
    28     ll lcm=1,x,y,ans=0;
    29     for(int i=0;i<n;i++)
    30         lcm*=chu[i];   //除数互质
    31     for(int i=0;i<n;i++)
    32     {
    33         ll temp=lcm/chu[i];
    34         ll gcd=exgcd(temp,chu[i],x,y); //互质所以gcd肯定是1 x*temp%chu[i]=1 <=>x*temp+y*chu[i]=1
    35         x=(x%chu[i]+chu[i])%chu[i];  //最小正整数解
    36         ans=(ans+yu[i]*x*temp)%lcm;
    37     }
    38     return ans;
    39 }
    40 ll EXCRT(int n)//扩展中国剩余定理除数互不互质都可以
    41 {
    42     ll temp=chu[0],k=yu[0],x,y,t;
    43     for(int i=1;i<n;i++)
    44     {
    45         ll gcd=exgcd(temp,chu[i],x,y);
    46         if((yu[i]-k)%gcd)return -1;//无解
    47         x*=(yu[i]-k)/gcd,t=chu[i]/gcd,x=(x%t+t)%t;
    48         k=temp*x+k,temp=temp/gcd*chu[i],k%=temp;
    49     }
    50     k=(k%temp+temp)%temp;
    51     return k;
    52 }
    53 int main()
    54 {
    55     int n;
    56     while(scanf("%d",&n)!=EOF)
    57     {
    58         for(int i=0;i<n;i++)
    59             scanf("%lld%lld",&chu[i],&yu[i]);
    60         printf("%lld
    ",CRT(n));
    61     }
    62     return 0;
    63 }
  • 相关阅读:
    2019CSUST集训队选拔赛题解(二)
    2019CSUST集训队选拔赛题解(一)
    Dilworth定理
    直线石子合并(区间DP)
    后缀自动机 个人学习笔记
    HDU_6709 CCPC网络赛H 优先队列 贪心
    2019省赛翻车记
    【挖坑】某场组队训练找到的想要挖一挖的东西
    暑假补题需要点的技能点
    QAQorz的训练记录
  • 原文地址:https://www.cnblogs.com/stranger-/p/9688516.html
Copyright © 2011-2022 走看看