★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10197798.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
There are a total of n courses you have to take, labeled from 0
to n-1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.
Example 1:
Input: 2, [[1,0]] Output:[0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is[0,1] .
Example 2:
Input: 4, [[1,0],[2,0],[3,1],[3,2]] Output:[0,1,2,3] or [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is[0,1,2,3]
. Another correct ordering is[0,2,1,3] .
Note:
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- You may assume that there are no duplicate edges in the input prerequisites.
现在你总共有 n 门课需要选,记为 0
到 n-1
。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
示例 1:
输入: 2, [[1,0]] 输出:[0,1]
解释: 总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为[0,1] 。
示例 2:
输入: 4, [[1,0],[2,0],[3,1],[3,2]] 输出:[0,1,2,3] or [0,2,1,3]
解释: 总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。 因此,一个正确的课程顺序是[0,1,2,3]
。另一个正确的排序是[0,2,1,3]
。
说明:
- 输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
- 你可以假定输入的先决条件中没有重复的边。
提示:
- 这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
- 通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
-
拓扑排序也可以通过 BFS 完成。
104ms
1 class Edge { 2 3 let y: Int 4 var next: Edge? 5 6 init(_ y: Int) { 7 self.y = y 8 } 9 } 10 11 struct Graph { 12 13 var edges: [Edge?] 14 var indegree: [Int] 15 16 init(numOfVertices: Int) { 17 self.edges = [Edge?](repeating: nil, count: numOfVertices) 18 self.indegree = [Int](repeating: 0, count: numOfVertices) 19 } 20 21 mutating func insertEdge(_ x: Int, _ y: Int) { 22 23 let newEdge = Edge(y) 24 newEdge.next = edges[x] 25 26 edges[x] = newEdge 27 indegree[y] += 1 28 } 29 } 30 31 32 class Solution { 33 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 34 35 var graph = createGraph(numCourses: numCourses, prerequisites: prerequisites) 36 37 var queue: [Int] = [] 38 for x in 0..<graph.indegree.count { 39 if graph.indegree[x] == 0 { 40 queue.append(x) 41 } 42 } 43 44 var order: [Int] = [] 45 46 while !queue.isEmpty { 47 48 var nextQueue: [Int] = [] 49 50 for x in queue { 51 order.append(x) 52 53 var edge = graph.edges[x] 54 while let _edge = edge { 55 let y = _edge.y 56 graph.indegree[y] -= 1 57 58 if graph.indegree[y] == 0 { 59 nextQueue.append(y) 60 } 61 62 edge = _edge.next 63 } 64 } 65 66 queue = nextQueue 67 } 68 69 return order.count == numCourses ? order : [] 70 } 71 72 func createGraph(numCourses: Int, prerequisites: [[Int]]) -> Graph { 73 74 var graph = Graph(numOfVertices: numCourses) 75 76 for pair in prerequisites { 77 let y = pair[0] 78 let x = pair[1] 79 80 graph.insertEdge(x,y) 81 } 82 83 return graph 84 } 85 86 }
108ms
1 class Solution { 2 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 3 4 var graph = [[Int]](repeating:[Int](), count: numCourses) 5 var coursesIn = Array(repeating: 0, count: numCourses) 6 var res = [Int]() 7 for a in prerequisites { 8 graph[a[1]].append(a[0]) 9 coursesIn[a[0]] += 1 10 } 11 var q = [Int]() 12 for i in coursesIn.indices { 13 if coursesIn[i] == 0 { q.append(i) } 14 } 15 while !q.isEmpty { 16 var t = q.removeFirst() 17 res.append(t) 18 for a in graph[t] { 19 coursesIn[a] -= 1 20 21 if coursesIn[a] == 0 { q.append(a) } 22 23 } 24 } 25 if res.count != numCourses { res.removeAll() } 26 return res 27 } 28 }
108ms
1 class Solution { 2 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 3 var res:[Int] = [Int]() 4 var graph:[[Int]] = [[Int]](repeating:[Int](),count:numCourses) 5 var ins:[Int] = [Int](repeating:0,count:numCourses) 6 for a in prerequisites 7 { 8 graph[a[1]].append(a[0]) 9 ins[a[0]] += 1 10 } 11 var q:[Int] = [Int]() 12 for i in 0..<numCourses 13 { 14 if ins[i] == 0 15 { 16 q.append(i) 17 } 18 } 19 while(!q.isEmpty) 20 { 21 var t:Int = q.first! 22 res.append(t) 23 q.removeFirst() 24 for num in graph[t] 25 { 26 ins[num] -= 1 27 if ins[num] == 0 28 { 29 q.append(num) 30 } 31 } 32 } 33 if res.count != numCourses 34 { 35 res.removeAll() 36 } 37 return res 38 } 39 }
112ms
1 class Solution { 2 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 3 if numCourses == 0 { 4 return [] 5 } else if numCourses == 1 { 6 return [0] 7 } 8 9 var inDegree = Array(repeating: 0, count: numCourses) 10 var graph = [Int: [Int]]() 11 for prerequisite in prerequisites { 12 inDegree[prerequisite[0]] += 1 13 graph[prerequisite[1], default: [Int]()].append(prerequisite[0]) 14 } 15 var queue = [Int]() 16 for course in 0 ..< numCourses where inDegree[course] == 0{ 17 queue.append(course) 18 } 19 var result = [Int]() 20 while !queue.isEmpty { 21 let course = queue.removeFirst() 22 result.append(course) 23 if let courses = graph[course] { 24 for course in courses { 25 inDegree[course] -= 1 26 if inDegree[course] == 0 { 27 queue.append(course) 28 } 29 } 30 } 31 } 32 return result.count == numCourses ? result : [] 33 } 34 }
116ms
1 class Course { 2 let number: Int 3 var dependents: [Int: Course] 4 var numberOfPrereq: Int 5 6 init(number: Int) { 7 self.number = number 8 dependents = [Int: Course]() 9 numberOfPrereq = 0 10 } 11 } 12 13 class Solution { 14 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 15 var courses = [Course]() 16 17 for courseNumber in 0..<numCourses { 18 courses.append(Course(number: courseNumber)) 19 } 20 21 // Build the graph 22 for prerequisite in prerequisites { 23 let courseNum = prerequisite[0] 24 let prerequisiteNum = prerequisite[1] 25 26 let course = courses[courseNum] 27 let pre = courses[prerequisiteNum] 28 course.numberOfPrereq += 1 29 30 // Add an edge 31 pre.dependents[course.number] = course 32 } 33 34 var result = [Int]() 35 36 var stack = [Course]() 37 for courseNumber in 0..<numCourses { 38 let course = courses[courseNumber] 39 if course.numberOfPrereq == 0 { 40 stack.append(course) 41 } 42 } 43 44 while !stack.isEmpty { 45 let c = stack.removeLast() 46 47 // Add to result 48 result.append(c.number) 49 50 for el in c.dependents { 51 // Remove edge 52 c.dependents.removeValue(forKey: el.value.number) 53 el.value.numberOfPrereq -= 1 54 if el.value.numberOfPrereq == 0 { 55 stack.append(el.value) 56 } 57 } 58 } 59 60 // Should have no edge left, otherwise we have a cycle 61 for course in courses { 62 if course.numberOfPrereq != 0 { 63 return [] 64 } 65 } 66 67 return result 68 } 69 }
120ms
1 class Solution { 2 func findOrder(_ total: Int, _ courses: [[Int]]) -> [Int] { 3 var dict: [Int: [Int]] = [:] 4 var prev: [Int] = Array(repeating: 0, count: total) 5 for course in courses { 6 prev[course.first!] += 1 7 dict[course.last!, default: []].append(course.first!) 8 } 9 var count = 0 10 var queue: [Int] = [] 11 for (index, num) in prev.enumerated() { 12 if num == 0 { 13 queue.append(index) 14 } 15 } 16 var res: [Int] = [] 17 while !queue.isEmpty { 18 let num = queue.first! 19 queue.removeFirst() 20 res.append(num) 21 if let nextCourses = dict[num], !courses.isEmpty { 22 for course in nextCourses { 23 prev[course] -= 1 24 if prev[course] == 0 { 25 queue.append(course) 26 } 27 } 28 } 29 } 30 if res.count != total { 31 return [] 32 } 33 return res 34 } 35 }
128ms
1 class Edge { 2 3 let y: Int 4 var next: Edge? 5 6 init(y: Int) { 7 self.y = y 8 } 9 } 10 11 struct Graph { 12 var edges: [Edge?] 13 var edgeCount: [Int] 14 var indegree: [Int] 15 16 init(vertexCount: Int) { 17 self.edges = [Edge?](repeating: nil, count: vertexCount) 18 self.edgeCount = [Int](repeating: 0, count: vertexCount) 19 self.indegree = [Int](repeating: 0, count: vertexCount) 20 } 21 } 22 23 class Solution { 24 25 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 26 guard numCourses > 0 else { 27 return [] 28 } 29 guard numCourses > 1 else { 30 return [0] 31 } 32 33 34 var graph = graphFrom(numCourses: numCourses, prerequisites: prerequisites) 35 var courseOrder: [Int] = [] 36 37 var queue: [Int] = [] 38 for x in 0..<graph.edges.count { 39 if graph.indegree[x] == 0 { 40 queue.append(x) 41 } 42 } 43 44 while !queue.isEmpty { 45 46 var nextQueue: [Int] = [] 47 48 for x in queue { 49 courseOrder.append(x) 50 51 var edge = graph.edges[x] 52 while let _edge = edge { 53 let y = _edge.y 54 graph.indegree[y] -= 1 55 56 if graph.indegree[y] == 0 { 57 nextQueue.append(y) 58 } 59 60 edge = _edge.next 61 } 62 } 63 64 queue = nextQueue 65 } 66 67 68 return courseOrder.count == numCourses ? courseOrder : [] 69 } 70 71 72 73 func graphFrom(numCourses: Int, prerequisites: [[Int]]) -> Graph { 74 var graph = Graph(vertexCount: numCourses) 75 76 for pair in prerequisites { 77 78 let x = pair[1] 79 let y = pair[0] 80 81 let newEdge = Edge(y: y) 82 newEdge.next = graph.edges[x] 83 84 graph.edges[x] = newEdge 85 graph.edgeCount[x] += 1 86 graph.indegree[y] += 1 87 } 88 89 return graph 90 } 91 }
132ms
1 class Solution { 2 class Node: Hashable { 3 static func == (lhs: Node, rhs: Node) -> Bool { 4 return lhs.val == rhs.val 5 } 6 7 var val: Int 8 var indegree: Set<Node> 9 var outdegree: Set<Node> 10 11 init(_ val: Int) { 12 self.val = val 13 self.indegree = Set<Node>() 14 self.outdegree = Set<Node>() 15 } 16 17 public var hashValue: Int { 18 return val 19 } 20 } 21 22 23 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 24 guard numCourses > 0 else { 25 return [Int]() 26 } 27 28 var map = [Int: Node]() 29 var queue = [Node]() 30 var set = Set<Node>() 31 var res = [Int]() 32 33 for num in 0..<numCourses { 34 map[num] = Node(num) 35 } 36 37 for pair in prerequisites { 38 map[pair[0]]?.indegree.insert(map[pair[1]]!) 39 map[pair[1]]?.outdegree.insert(map[pair[0]]!) 40 } 41 42 for (_, node) in map { 43 if node.indegree.count == 0 { 44 queue.append(node) 45 set.insert(node) 46 res.append(node.val) 47 } 48 } 49 50 while !queue.isEmpty { 51 let curr = queue.removeFirst() 52 for node in curr.outdegree { 53 node.indegree.remove(curr) 54 55 if node.indegree.count == 0, !set.contains(node) { 56 queue.append(node) 57 set.insert(node) 58 res.append(node.val) 59 } 60 } 61 } 62 63 return res.count == numCourses ? res : [Int]() 64 } 65 }
160ms
1 class Solution { 2 func findOrder(_ n: Int, _ prerequisites: [[Int]]) -> [Int] { 3 var indegree = [Int](repeating: 0 , count: n) 4 var adjMap = [Int: Set<Int>]() 5 for prerequisite in prerequisites { 6 let first = prerequisite[1] 7 let second = prerequisite[0] 8 indegree[second] += 1 9 var newSet : Set<Int> 10 if let s = adjMap[first]{ 11 newSet = s 12 }else { 13 newSet = Set<Int>() 14 } 15 newSet.insert(second) 16 adjMap[first] = newSet 17 } 18 var queue = [Int]() 19 for i in 0 ..< n{ 20 if indegree[i] == 0{ 21 queue.append(i) 22 } 23 } 24 var res = [Int]() 25 while !queue.isEmpty{ 26 let cur = queue.removeFirst() 27 res.append(cur) 28 if let map = adjMap[cur]{ 29 for adj in map{ 30 indegree[adj] -= 1 31 if indegree[adj] == 0{ 32 queue.append(adj) 33 } 34 } 35 } 36 } 37 if res.count != n { 38 return [Int]() 39 } 40 return res 41 } 42 }
184ms
1 class Solution { 2 struct Node{ 3 var nodes: [Int] = [Int]() 4 var isSeen: Bool = false 5 } 6 var graph: [Node] = [Node]() 7 var order: [Int] = [Int]() 8 var graphHasCycle: Bool = false 9 var isInStack: [Bool] = [Bool]() 10 func dfs(_ node: Int){ 11 isInStack[node] = true 12 graph[node].isSeen = true 13 for to in graph[node].nodes{ 14 if !graph[to].isSeen{ 15 dfs(to) 16 }else{ 17 if isInStack[to] { 18 graphHasCycle = true 19 } 20 } 21 } 22 isInStack[node] = false 23 order.append(node) 24 } 25 func addEdge(_ from: Int , _ to: Int){ 26 graph[from].nodes.append(to) 27 } 28 func findOrder(_ numCourses: Int, _ prerequisites: [[Int]]) -> [Int] { 29 for i in 0...numCourses - 1{ 30 graph.append(Node()) 31 isInStack.append(false) 32 } 33 var from : Int? 34 var to : Int? 35 for edge in prerequisites { 36 from = edge[0] 37 to = edge[1] 38 addEdge(from!,to!) 39 } 40 for i in 0...numCourses - 1 { 41 if !graph[i].isSeen{ 42 dfs(i) 43 } 44 } 45 if graphHasCycle { 46 return [] 47 } 48 return order 49 } 50 }