zoukankan      html  css  js  c++  java
  • [Swift]LeetCode1210. 穿过迷宫的最少移动次数 | Minimum Moves to Reach Target with Rotations

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(let_us_code)
    ➤博主域名:https://www.zengqiang.org
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址:https://www.cnblogs.com/strengthen/p/11566907.html
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    In an n*n grid, there is a snake that spans 2 cells and starts moving from the top left corner at (0, 0) and (0, 1). The grid has empty cells represented by zeros and blocked cells represented by ones. The snake wants to reach the lower right corner at (n-1, n-2) and (n-1, n-1).

    In one move the snake can:

    • Move one cell to the right if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
    • Move down one cell if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
    • Rotate clockwise if it's in a horizontal position and the two cells under it are both empty. In that case the snake moves from (r, c) and (r, c+1) to (r, c) and (r+1, c).
    • Rotate counterclockwise if it's in a vertical position and the two cells to its right are both empty. In that case the snake moves from (r, c) and (r+1, c) to (r, c) and (r, c+1).

    Return the minimum number of moves to reach the target.

    If there is no way to reach the target, return -1.

    Example 1:

    Input: grid = [[0,0,0,0,0,1],
                   [1,1,0,0,1,0],
                   [0,0,0,0,1,1],
                   [0,0,1,0,1,0],
                   [0,1,1,0,0,0],
                   [0,1,1,0,0,0]]
    Output: 11
    Explanation:
    One possible solution is [right, right, rotate clockwise, right, down, down, down, down, rotate counterclockwise, right, down].
    

    Example 2:

    Input: grid = [[0,0,1,1,1,1],
                   [0,0,0,0,1,1],
                   [1,1,0,0,0,1],
                   [1,1,1,0,0,1],
                   [1,1,1,0,0,1],
                   [1,1,1,0,0,0]]
    Output: 9
    

    Constraints:

    • 2 <= n <= 100
    • 0 <= grid[i][j] <= 1
    • It is guaranteed that the snake starts at empty cells.

    你还记得那条风靡全球的贪吃蛇吗?

    我们在一个 n*n 的网格上构建了新的迷宫地图,蛇的长度为 2,也就是说它会占去两个单元格。蛇会从左上角((0, 0) 和 (0, 1))开始移动。我们用 0 表示空单元格,用 1 表示障碍物。蛇需要移动到迷宫的右下角((n-1, n-2) 和 (n-1, n-1))。

    每次移动,蛇可以这样走:

    • 如果没有障碍,则向右移动一个单元格。并仍然保持身体的水平/竖直状态。
    • 如果没有障碍,则向下移动一个单元格。并仍然保持身体的水平/竖直状态。
    • 如果它处于水平状态并且其下面的两个单元都是空的,就顺时针旋转 90 度。蛇从((r, c)(r, c+1))移动到 ((r, c)(r+1, c))。
    • 如果它处于竖直状态并且其右面的两个单元都是空的,就逆时针旋转 90 度。蛇从((r, c)(r+1, c))移动到((r, c)(r, c+1))。

    返回蛇抵达目的地所需的最少移动次数。

    如果无法到达目的地,请返回 -1

    示例 1:

    输入:grid = [[0,0,0,0,0,1],
                   [1,1,0,0,1,0],
                   [0,0,0,0,1,1],
                   [0,0,1,0,1,0],
                   [0,1,1,0,0,0],
                   [0,1,1,0,0,0]]
    输出:11
    解释:
    一种可能的解决方案是 [右, 右, 顺时针旋转, 右, 下, 下, 下, 下, 逆时针旋转, 右, 下]。
    

    示例 2:

    输入:grid = [[0,0,1,1,1,1],
                   [0,0,0,0,1,1],
                   [1,1,0,0,0,1],
                   [1,1,1,0,0,1],
                   [1,1,1,0,0,1],
                   [1,1,1,0,0,0]]
    输出:9
    

    提示:

    • 2 <= n <= 100
    • 0 <= grid[i][j] <= 1
    • 蛇保证从空单元格开始出发。

    Runtime: 252 ms
    Memory Usage: 21.2 MB
      1 class Solution {
      2     func minimumMoves(_ grid: [[Int]]) -> Int {
      3         let n:Int = grid.count
      4         var mem:[[[Bool]]] = [[[Bool]]](repeating: [[Bool]](repeating: [Bool](repeating: false, count: 2), count: n), count: n)
      5         var q:[Pos] = [Pos]()
      6         q.append(Pos(0, 0, 0, 0))
      7         while(!q.isEmpty)
      8         {
      9             let cur:Pos = q.removeFirst()
     10             if cur.s == 0 && cur.x == n - 1 && cur.y == n - 2
     11             {
     12                 return cur.step
     13             }
     14             for i in 0..<4
     15             {
     16                 if canMove(cur, i, grid, mem)
     17                 {
     18                     let next:Pos = move(cur, i)
     19                     mem[next.x][next.y][next.s] = true
     20                     q.append(next)
     21                 }
     22             }
     23         }
     24         return -1
     25     }
     26     
     27     func canMove(_ cur:Pos,_ s:Int,_ grid:[[Int]],_ mem:[[[Bool]]]) -> Bool
     28     {
     29         let n:Int = grid.count
     30         let x:Int = cur.x
     31         let y:Int = cur.y
     32         if s == 0
     33         {
     34             if cur.s == 0
     35             {
     36                 return y + 2 < n && !mem[x][y + 1][0] && grid[x][y + 2] != 1
     37             }
     38             else
     39             {
     40                 return y + 1 < n && !mem[x][y + 1][1] && grid[x][y + 1] != 1 && grid[x + 1][y + 1] != 1
     41             }
     42         }
     43         else if s == 1
     44         {
     45             if cur.s == 0
     46             {
     47                 return x + 1 < n && !mem[x + 1][y][0] && grid[x + 1][y] != 1 && grid[x + 1][y + 1] != 1
     48             }
     49             else
     50             {
     51                 return x + 2 < n && !mem[x + 1][y][1] && grid[x + 2][y] != 1
     52             }
     53         }
     54         else if s == 2
     55         {
     56             if cur.s != 0
     57             {
     58                 return false
     59             }
     60             return x + 1 < n && !mem[x][y][1] && grid[x + 1][y] != 1 && grid[x + 1][y + 1] != 1
     61         }
     62         else
     63         {
     64             if cur.s != 1
     65             {
     66                 return false
     67             }
     68             return y + 1 < n && !mem[x][y][0] && grid[x][y + 1] != 1 && grid[x + 1][y + 1] != 1
     69         }
     70     }
     71     
     72     func move(_ cur:Pos,_ s:Int) -> Pos
     73     {
     74         var x:Int = cur.x
     75         var y:Int = cur.y
     76         var pp = cur.s
     77         if s == 0
     78         {
     79             y += 1
     80         }
     81         else if s == 1
     82         {
     83             x += 1
     84         }
     85         else if s == 2
     86         {
     87             pp = 1
     88         }
     89         else
     90         {
     91             pp = 0
     92         }
     93          return Pos(x, y, pp, cur.step + 1)
     94     }
     95 }
     96 
     97 struct Pos
     98 {
     99     var x:Int = 0
    100     var y:Int = 0
    101     var s:Int = 0
    102     var step:Int = 0
    103     init(_ x:Int,_ y:Int,_ s:Int,_ step:Int)
    104     {
    105         self.x = x
    106         self.y = y
    107         self.s = s
    108         self.step = step
    109     }
    110

    236ms
     1 class Solution {
     2     func minimumMoves(_ grid: [[Int]]) -> Int {
     3         let rows = grid.count, cols = grid[0].count
     4         var queue = [(Int, Int, Int)]()
     5         queue.append((0, 0, 0))
     6 
     7         var dist = [[[Int]]](repeating: [[Int]](repeating: [Int](repeating: Int.max, count: 2), count: cols), count: rows)
     8 
     9         func valid(_ r: Int, _ c: Int) -> Bool {
    10             return r >= 0 && r < rows && 0 <= c && c < cols
    11         }
    12 
    13         func bfs_check(_ q: inout [(Int, Int, Int)], _ r: Int, _ c: Int, _ dir: Int, _ curDist: Int) {
    14             if curDist < dist[r][c][dir] {
    15                 dist[r][c][dir] = curDist;
    16                 q.append((r, c, dir))
    17             }
    18         }
    19         bfs_check(&queue, 0, 0, 0, 0)
    20         while queue.count > 0 {
    21             let (r, c, dir) = queue.removeFirst()
    22             let curdist = dist[r][c][dir]
    23             let r2 = dir == 0 ? r : r + 1
    24             let c2 = dir == 0 ? c + 1 : c
    25 
    26             if valid(r, c + 1) && valid(r2, c2 + 1) && grid[r][c + 1] == 0 && grid[r2][c2 + 1] == 0 {
    27                  bfs_check(&queue, r, c + 1, dir, curdist + 1)
    28             }
    29 
    30             if valid(r + 1, c) && valid(r2 + 1, c2) && grid[r + 1][c] == 0 && grid[r2 + 1][c2] == 0 {
    31                 bfs_check(&queue, r + 1, c, dir, curdist + 1)
    32             }
    33 
    34             if dir == 0 {
    35                 if valid(r + 1, c) && valid(r + 1, c + 1) && grid[r + 1][c] == 0 && grid[r + 1][c + 1] == 0 {
    36                     bfs_check(&queue, r, c, 1, curdist + 1)
    37                 }
    38             } else {
    39                 if valid(r, c + 1) && valid(r + 1, c + 1) && grid[r][c + 1] == 0 && grid[r + 1][c + 1] == 0 {
    40                     bfs_check(&queue, r, c, 0, curdist + 1)
    41                 }
    42             }
    43         }
    44         let answer = dist[rows - 1][cols - 2][0]
    45         return answer < Int.max ? answer : -1
    46     }
    47 }
  • 相关阅读:
    luogu P1630 求和(枚举暴力)
    luogu P3414 SAC#1
    luogu P1869 愚蠢的组合数(质因数+瞎搞)
    luogu P1586 四方定理(背包)
    luogu P3795 钟氏映射(递推)
    2017.8.15 [Haoi2016]字符合并 区间dp+状压dp
    [NOI2002] 荒岛野人 扩展欧几里得算法
    [Noi2002]Savage 扩展欧几里得
    bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
    bzoj 3505: [Cqoi2014]数三角形
  • 原文地址:https://www.cnblogs.com/strengthen/p/11566907.html
Copyright © 2011-2022 走看看