N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M(1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
题意:给出n只奶牛,m个胜负关系,求有几只奶牛的排名可以确定?
题解:传递闭包什么的,听着很高级,其实非常滑稽,感觉自学啥的也就两分钟,其实也就是一个floyd的延伸
用floyd根据三头牛之间a-b,b-c的胜负关系来判断a-c的胜负关系,然后显然除了和自己以外,如果和其他奶牛的关系已经确定了,他的排名也就确定了
然后就写出来了
代码如下:
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int map[110][110],n,m; int main() { memset(map,-1,sizeof(map)); scanf("%d%d",&n,&m); int xx,yy; for(int i=1;i<=m;i++) { scanf("%d%d",&xx,&yy); map[xx][yy]=1; map[yy][xx]=0; } for(int i=1;i<=n;i++) { map[i][i]=2; } for(int k=1;k<=n;k++) { for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(map[i][k]==1&&map[k][j]==1) { map[i][j]=1; } if(!map[i][k]&&!map[k][j]) { map[i][j]=0; } } } } int ans=0; for(int i=1;i<=n;i++) { int flag=1; for(int j=1;j<=n;j++) { if(map[i][j]==-1) { flag=0; } } ans+=flag; } printf("%d ",ans); }