方式一: 通过case class创建DataFrames(反射)
TestDataFrame1.scala
package com.bky
// 隐式类的导入
// 定义case class,相当于表结构
case class Dept(var id:Int, var position:String, var location:String)
// 需要导入SparkSession这个包
import org.apache.spark.sql.SparkSession
/**
* 方式一: 通过case class创建DataFrames(反射)
*/
object TestDataFrame1 {
def main(args: Array[String]): Unit = {
/**
* 直接使用SparkSession进行文件的创建。
* 封装了SparkContext,SparkConf,SQLContext,
* 为了向后兼容,SQLContext和HiveContext也被保存了下来
*/
val spark = SparkSession
.builder() //构建sql
.appName("TestDataFrame1") // 设置文件名
.master("local[2]") // 设置executor
.getOrCreate() //获取或创建
import spark.implicits._ // 隐式转换
// 将本地的数据读入RDD,将RDD与case class关联
val deptRDD = spark.read.textFile("/Users/hadoop/data/dept.txt")
.map(line => Dept(line.split(" ")(0).toInt,
line.split(" ")(1),
line.split(" ")(2).trim))
// 将RDD转换成DataFrames(反射)
val df = deptRDD.toDF()
// 将DataFrames创建成一个临时的视图
df.createOrReplaceTempView("dept")
// 使用SQL语句进行查询
spark.sql("select * from dept").show()
}
}
精简版 TestDataFrame1.scala
package com.bky
import org.apache.spark.sql.SparkSession
object TestDataFrame1 extends App {
val spark = SparkSession
.builder() //构建sql
.appName("TestDataFrame1")
.master("local[2]")
.getOrCreate()
import spark.implicits._
val deptRDD = spark.read.textFile("/Users/hadoop/data/dept.txt")
.map(line => Dept(line.split(" ")(0).toInt,
line.split(" ")(1),
line.split(" ")(2).trim))
val df = deptRDD.toDF()
df.createOrReplaceTempView("dept")
spark.sql("select * from dept").show()
}
case class Dept(var id:Int, var position:String, var location:String)
方式二:通过创建structType创建DataFrames(编程接口)
TestDataFrame2.scala
package com.bky
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession}
/**
*
* 方式二:通过创建structType创建DataFrames(编程接口)
*/
object TestDataFrame2 extends App {
val spark = SparkSession
.builder()
.appName("TestDataFrame2")
.master("local[2]")
.getOrCreate()
/**
* 将RDD数据映射成Row,需要导入import org.apache.spark.sql.Row
*/
import spark.implicits._
val path = "/Users/hadoop/data/dept.txt"
val fileRDD = spark.read.textFile(path)
val rowRDD= fileRDD.map(line => {
val fields = line.split(" ")
Row(fields(0).toInt, fields(1), fields(2).trim)
})
// 创建StructType来定义结构
val innerStruct = StructType(
// 字段名,字段类型,是否可以为空
StructField("id", IntegerType, true) ::
StructField("position", StringType, true) ::
StructField("location", StringType, true) :: Nil
)
val df = spark.createDataFrame(innerStruct)
df.createOrReplaceTempView("dept")
spark.sql("select * from dept").show()
}
方式三:通过json文件创建DataFrames
TestDataFrame3.scala
package com.bky
import org.apache.spark.sql.SparkSession
/**
* 方式三:通过json文件创建DataFrames
*/
object TestDataFrame3 extends App {
val spark = SparkSession
.builder()
.master("local[2]")
.appName("TestDataFrame3")
.getOrCreate()
val path = "/Users/hadoop/data/test.json"
val fileRDD = spark.read.json(path)
fileRDD.createOrReplaceTempView("test")
spark.sql("select * from test").show()
}