zoukankan      html  css  js  c++  java
  • AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f

    题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设(dp[i][j])表示有(i)个0色和(j)个非0色的图的拓扑序个数((i<j)),则转移一是加入一个0色球,二是加入一个非0色球(拓扑序以非0色球开始),这种情况下我们固定了开头所以还剩(((K-1)j+i-1))个位置放入((K-2))个球,(dp[i][j]=dp[i-1][j]+dp[i][j-1] imes {{(K-1)j+i-1}choose{K-2}}).

    另外有一种反着的做法(我代码写的就是这个),但是并不懂(曾经懂过但是现在脑子又乱了)

    启示: 这种计数很多都是考虑第一个,千万不要惯性思维无脑考虑最后一个!!!

    代码

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #define llong long long
    using namespace std;
    
    const int N = 2000;
    const int P = 1e9+7;
    llong dp[N+3][N+3];
    llong fact[5000003],finv[5000003];
    int n,m;
    
    llong quickpow(llong x,llong y)
    {
    	llong cur = x,ret = 1ll;
    	for(int i=0; y; i++)
    	{
    		if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
    		cur = cur*cur%P;
    	}
    	return ret;
    }
    
    llong comb(llong x,llong y) {return x<0 || y<0 || x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;}
    
    int main()
    {
    	fact[0] = 1ll; for(int i=1; i<=5000000; i++) fact[i] = fact[i-1]*i%P;
    	finv[5000000] = quickpow(fact[5000000],P-2); for(int i=5000000-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
    	scanf("%d%d",&n,&m);
    	if(m==1) {printf("1"); return 0;}
    	dp[0][0] = 1ll;
    	for(int i=1; i<=n; i++)
    	{
    		dp[i][0] = 1ll;
    		for(int j=1; j<=i; j++)
    		{
    			dp[i][j] = dp[i-1][j];
    			dp[i][j] += comb((n-i)+(n-(j-1))*(m-1)-1,m-2)*dp[i][j-1]%P;
    			dp[i][j] %= P;
    		}
    	}
    	llong ans = dp[n][n]*fact[n]%P;
    	printf("%lld
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    《Android 编程权威指南》读书总结
    hadoop记录-浅析Hadoop中的DistCp和FastCopy(转载)
    Hadoop记录-queue使用率
    Hadoop记录-切换NN
    Hadoop记录-退役
    Hadoop记录-queue mysql
    Linux记录-grafana opentsdb安装
    Hadoop记录-JMX参数
    Linux记录-open-falcon开源监控系统部署
    Hadoop记录- Yarn Job MAX
  • 原文地址:https://www.cnblogs.com/suncongbo/p/11144645.html
Copyright © 2011-2022 走看看