zoukankan      html  css  js  c++  java
  • TOJ1693(Silver Cow Party)

    Silver Cow Party 分享至QQ空间 去爱问答提问或回答

    Time Limit(Common/Java):2000MS/20000MS     Memory Limit:65536KByte
    Total Submit: 58            Accepted: 28

    Description

     

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

     

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farmBi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

     

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

     

    Sample Output

     

    10

     

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

    Source

    USACO February 2007

    思路:对原图求一次最短路,再对反图进行一次最短路,然后找最求解即可.

     

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <queue>
    using namespace std;
    const int maxn = 1100;
    const int maxm = 101000;
    const int INF = 0x7fffffff;
    vector<pair<int, int> > g[maxn];
    vector<pair<int, int> > rg[maxn];//reverse;
    int gn, gm, x;
    bool inque[maxn];
    queue<int> Q;
    int d[maxn];//保存原图最短径.
    int rd[maxn];//保存反图的最短路径值.
    
    void spfa2(int s) {
        int i;
        memset(inque, false, sizeof(inque));
        for(i = 1; i < maxn; i++) rd[i] = INF;
        rd[s] = 0;
        while(!Q.empty()) Q.pop();
        Q.push(s);
        inque[s] = true;
        while(!Q.empty()) {
            int u = Q.front();
            Q.pop();
            for(i = 0; i < (int)rg[u].size(); i++) {
                int t = rg[u][i].first;
                if( rd[u] != INF && rd[u] + rg[u][i].second < rd[t]) {
                    rd[t] = rd[u] + rg[u][i].second;
                    if(!inque[t]) {
                        inque[t] = true;
                        Q.push(t);
                    }
                }
            }
            inque[u] = false;
        }
    }
    
    void work(const int s) {
        int i;
        int maxv = -1;
        for(i = 1; i <= gn; i++) {
            if(i != s) {
                if(d[i] + rd[i] > maxv) {
                    maxv = d[i] + rd[i];
                }
            }
        }
        printf("%d
    ", maxv);
    }
    
    void spfa1(int s) {
        int i;
        memset(inque, false, sizeof(inque));
        for(i = 1; i < maxn; i++) d[i] = INF;
        d[s] = 0;
        while(!Q.empty()) Q.pop();
        Q.push(s);
        inque[s] = true;
        while(!Q.empty()) {
            int u = Q.front();
            Q.pop();
            for(i = 0; i < (int)g[u].size(); i++) {
                int t = g[u][i].first;
                if(d[u] != INF && d[u] + g[u][i].second < d[t]) {
                    d[t] = d[u] + g[u][i].second;
                    if(!inque[t]) {
                        inque[t] = true;
                        Q.push(t);
                    }
                }
            }
            inque[u] = false;
        }
    }
    
    int main()
    {
        int i;
        int x, y, w;
        int start;
        pair<int, int> t;
        while(scanf("%d%d%d", &gn, &gm, &start) != EOF) {
            for(i = 1; i <= gn; i++) {
                g[i].clear();
                rg[i].clear();
            }
            for(i = 0; i < gm; i++) {
                scanf("%d%d%d", &x, &y, &w);
                t.first = y;
                t.second = w;
                g[x].push_back(t);
                t.first = x;
                t.second = w;
                rg[y].push_back(t);
            }
            spfa1(start);
            spfa2(start);
            work(start);
        }
        return 0;
    }
  • 相关阅读:
    深入理解JavaScript系列(15):函数(Functions)
    深入理解JavaScript系列(8):S.O.L.I.D五大原则之里氏替换原则LSP
    深入理解JavaScript系列(2):揭秘命名函数表达式
    深入理解JavaScript系列(3):全面解析Module模式
    深入理解JavaScript系列(21):S.O.L.I.D五大原则之接口隔离原则ISP
    深入理解JavaScript系列(18):面向对象编程之ECMAScript实现(推荐)
    理解Javascript_13_执行模型详解
    深入理解JavaScript系列(6):S.O.L.I.D五大原则之单一职责SRP
    深入理解JavaScript系列(7):S.O.L.I.D五大原则之开闭原则OCP
    深入理解JavaScript系列(11):执行上下文(Execution Contexts)
  • 原文地址:https://www.cnblogs.com/suncoolcat/p/3295231.html
Copyright © 2011-2022 走看看