zoukankan      html  css  js  c++  java
  • hdu1159Common Subsequence——动态规划(最长公共子序列(LCS))

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    现附上AC代码:

    #include<iostream>
    #include<cstring>
    using namespace std;
    const int maxn=1000+10;
    int s[maxn][maxn];
    char str1[maxn],str2[maxn];

    void solve()
    {
    memset(s,0,sizeof(s));
    while(~scanf("%s%s",str1+1,str2+1))
    {
    int s1=strlen(str1+1),s2=strlen(str2+1);
    for(int i=1;i<=s1;i++)
    {
    for(int j=1;j<=s2;j++)
    {
    if(str1[i]==str2[j]) s[i][j]=s[i-1][j-1]+1;
    else s[i][j]=max(s[i-1][j],s[i][j-1]);
    }
    }
    cout<<s[s1][s2]<<endl;
    }
    }
    int main()
    {
    solve();
    return 0;
    }

    在做动态规划问题时,有不少情况都是需要申请一个二维数组存储每个状态。例如这道题中s[i][j]存储的是第一个字符串前i个字符与第二个字符串前j个字符的最长公共子序列,而这也是动态规划的主要思想,多阶段决策。有时二维数组也可用一维数组进行代替,使用滚动数组,但这样就不能直到最有方案的具体步骤。

    做动态规划重要的是找好二维数组,明确两个下标的具体意义,并找到递推公式,那么这道题就基本可以完成了。


    作者:孙建钊
    出处:http://www.cnblogs.com/sunjianzhao/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    TP5框架 《防sql注入、防xss攻击》
    jsonp跨域的原理
    PHP程序发送HTTP请求代码
    encodeURI()和encodeURIComponent() 区别
    密码存储中MD5的安全问题与替代方案
    获取用户Ip地址通用方法常见安全隐患(HTTP_X_FORWARDED_FOR)
    PHP中的调试工具 --Xdebug安装与使用
    手机端页面自适应解决方案—rem布局(进阶版,附源码示例)
    thinkphp 微信授权登录 以及微信实现分享
    PHP中使用CURL之php curl详细解析和常见大坑
  • 原文地址:https://www.cnblogs.com/sunjianzhao/p/11373156.html
Copyright © 2011-2022 走看看