zoukankan      html  css  js  c++  java
  • 卷积图示--bilibili课程tensorflow课程第六课(手写数字识别)

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @Time    : 2018/3/30 上午8:26
    # @Author  : ruina.sun
    # @Software: PyCharm Community Edition
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    import os
    
    pro_path = os.path.abspath('..')
    # 样本个数是位置权值参数个数的5-30倍
    # receptive field 感受野,猫看球视觉实验,部分视觉中枢的神经元是亮的,-->局部感受野。
    # convolution (卷积)-->划窗,点乘求和
    # pooling (池化)-->划窗,取max/mean值
    # padding (填充)卷积和池化都存在窗格不够的情况,都需要padding处理方式。
    #          步长为(1,1)的话:same-padding保留边缘信息,可能会补零以得到和原来平面一样大小,
    #                         valid-padding有可能缺失边缘信息,不补零可能会得到比原来平面小的平面。
    '''多通道计算: https://blog.csdn.net/yudiemiaomiao/article/details/72466402'''
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    batch_size = 100
    n_batch = mnist.train.num_examples // batch_size
    
    
    # 截尾正太初始化权值
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    # 偏置初始化为0.1
    def bias_variable(shape):
        # initial = tf.constant(shape, 0.1)
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    # 卷积层
    def conv2d(x, W):
        '''参数W就是卷积窗口'''
        '''x: data_format: "NHWC":[batch, in_height, in_width, in_channels] '''
        '''W: filter / kernel tensor of shape, 卷积窗大小: [filter_height, filter_width, in_channels, out_channels]'''
        '''W: 卷积窗大小: [卷积窗高, 卷积窗宽, 输入图层个数, 单位输入图层的输出图层个数或称卷积窗/核个数(有几个卷积窗/核,每一个输入图层就有几个输出图层)]'''
        '''stride: stride[0] = stride[3] = 1, stride[1]代表x方向步长, stride[1]代表y方向步长'''
        '''padding: 'SAME' or 'VALID' '''
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    # 池化层
    def max_pooling_2x2(x):
        '''池化没有任何参数,直接画切窗口区域,取最大取均值'''
        '''ksize[0] = stride[3] = 1, 池化窗大小:ksize[1]代表窗长/高?, ksize[1]代表窗高/长?'''
        '''stride[0] = stride[3] = 1, stride[1]代表x方向步长, stride[2]代表y方向步长'''
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    print('*******', mnist.test.labels.shape)
    
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784])  # 28*28
    y = tf.placeholder(tf.float32, [None, 10])
    
    # 改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]
    x_image = tf.reshape(x, [-1, 28, 28, 1])  # -1之后会变成100,1表示是黑白的图片,rgb的话会是3,对于3通道图像的各通道而言,是在每个通道上分别执行二维卷积,然后将3个通道加起来,得到该位置的二维卷积输出。
    
    # 初始化第一个卷积层的权值和偏置, each filter is a chanel
    W_conv1 = weight_variable([5, 5, 1, 32])  # 采用32个5*5*1的卷积核,从一个黑白输入图层抽取特征,得到32个特征平面。如果是rgb的话需要把1改成3。
    b_conv1 = bias_variable([32])  # 每一个卷积核有一个偏置值/每一个输出面or体有一个偏置值?
    
    # 把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pooling_2x2(h_conv1)
    
    # 初始化第二个卷积层的权值和偏置, each filter is a chanel
    W_conv2 = weight_variable([5, 5, 32, 64])  # 采用64个5*5*32的卷积核,从一个黑白输入图层抽取特征,得到64个特征平面。32个通道会对应相加,最终还是得到64个map
    b_conv2 = bias_variable([64])  # 每一个卷积核有一个偏置值/每一个输出面or体有一个偏置值?
    
    # 把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pooling_2x2(h_conv2)
    
    # 28*28的图片经过第一次的卷积(SAME)后,得到28*28,池化后14*14*32
    # 第一次的卷积(SAME)后,得到14*14,池化后7*7*64
    # 经过上面的两层操作得到64张7*7的平面,或者说7*7*64的立方体。
    
    # 把池化层2的输出扁平化为1维,拍平
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    # 初始化第一个全连接层的权值
    W_fc1 = weight_variable([7 * 7 * 64, 1024])  # 上一层的输入有7*7*64个神经元,全连接到1024个神经元上。
    b_fc1 = bias_variable([1024])
    # 求第一个全连接层的输出
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    # 对全连接的输出drop一下,降低过拟合
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    # 初始化第二个全连接层
    W_fc2 = weight_variable([1024, 10])  # 上一层的输入有7*7*64个神经元,全连接到1024个神经元上。
    b_fc2 = bias_variable([10])
    # 计算输出
    prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2))
    
    # 交叉熵代价函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    # 使用优化器
    train_step = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
    # 结果存放在一个布尔列表中
    correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))  # argmax返回一维张量中最大的值位置下标
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch in range(21):
            for batch in range(n_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                print('@@@@@@@', batch_ys.shape)
    
                sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.7})
    
            acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
            print('Iter' + str(epoch) + ', Testing Accuracy=' + str(acc))
    
    # Iter0, Testing Accuracy=0.8552
    # Iter1, Testing Accuracy=0.9664
    # Iter2, Testing Accuracy=0.9785
    # Iter3, Testing Accuracy=0.981
    # Iter4, Testing Accuracy=0.9834
    # Iter5, Testing Accuracy=0.9858
    # Iter6, Testing Accuracy=0.9867
    # Iter7, Testing Accuracy=0.9858
    # Iter8, Testing Accuracy=0.9873
    # Iter9, Testing Accuracy=0.9856
    # Iter10, Testing Accuracy=0.9874
    # Iter11, Testing Accuracy=0.9897
    # Iter12, Testing Accuracy=0.9898
    # Iter13, Testing Accuracy=0.9884
    # Iter14, Testing Accuracy=0.9897
    # Iter15, Testing Accuracy=0.9895
    # Iter16, Testing Accuracy=0.9903
    # Iter17, Testing Accuracy=0.9906
    # Iter18, Testing Accuracy=0.9912
    # Iter19, Testing Accuracy=0.9904
    # Iter20, Testing Accuracy=0.9921

  • 相关阅读:
    mysql--表数据的操作
    mysql--增删改查
    mysql--约束条件
    Mysql--基本配置
    Mysql--数据表
    Mysql--数据库的操作
    位运算的应用
    读书笔记--模板与泛型编程
    读书笔记六
    读书笔记五
  • 原文地址:https://www.cnblogs.com/sunruina2/p/11288327.html
Copyright © 2011-2022 走看看