平方和 n(n+1)(2n+1)/6
推导:(n+1)^3-n^3=3n^2+3n+1, n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 .............................. 3^3-2^3=3*(2^2)+3*2+1 2^3-1^3=3*(1^2)+3*1+1. 把这n个等式两端分别相加,得: (n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n, 由于1+2+3+...+n=(n+1)n/2, 代人上式得: n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n 整理后得: 1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6 a^2+b^2=a(a+b)+b(a-b)
奇数项:(2n-1)^2=4n^2-4n+1
S奇数=4(1^2+……+n^2)-4(1+……+n)+n =4*n(n+1)(2n+1)/6-4*(1+n)n/2+n =(2n+1)(2n-1)n/3
偶数项:(2n)^2=4n^2
S偶数=4(1^2+……+n^2)=2n(n+1)(2n+1)/3
立方和 [n(n+1)/2]^2
推导:(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 所以有 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2
奇数项:(2n-1)^3=8n^3-12n^2+6n-1
S奇数=8(1^3+……+n^3)-12(1^2+……+n^2)+6(1+……+n)-n =8*[n(n+1)/2]^2-12*n(n+1)(2n+1)/6+6*n(n+1)/2-n =n(2n^3+3n+4)
偶数项:(2n)^3=8n^3
S偶数=8(1^3+……+n^3) =2[n(n+1)]^2