zoukankan      html  css  js  c++  java
  • PTA (Advanced Level) 1004 Counting Leaves

    Counting Leaves

      A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

    Input Specification:

      Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (<N), the number of non-leaf nodes. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]

      where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

    The input ends with N being 0. That case must NOT be processed.

    Output Specification:

      For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

      The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1leaf node. Then we should output 0 1 in a line.

    Sample Input:

    2 1
    01 1 02

    Sample Output:

    0 1

    题目解析

      本题给出一颗家族关系树第一行首先给出两个整数0<N<100为家族中人数,M<N为非叶子节点个数(有孩子的人的数量)之后跟随M行,每行都是一个有孩子的人的信息,其中包括一个两位id为其对应编号,一个整数K为其孩子的数量,之后K个两位数为其孩子的编号。家族树的根结点编号为1,要求由根结点所在层开始输出每层拥有的叶子结点个数(每层没有孩子的成员个数)。

           用一个vector<int> 类型的数组child[ ]储存每个人的孩子的编号,int型数组cnt[ ]储存每层的叶子结点数量,视根结点为第0层由根结点开始dfs搜索其每一个孩子,每个点的孩子所在的层数就是其层数加一,若搜索到没有孩子的结点便将其对应层叶子结点数量加一。将搜索到的最大层数计入maxL。

           最后由0到maxL输出每层的叶子结点数量即可。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 vector<int> child[110];  //储存每个id的孩子
     4 int cnt[110]; //记录每层叶子结点的个数
     5 int n, m;   //n为总人数, m为非叶子结点数量
     6 int maxL = INT_MIN; //maxL记录最大层数
     7 void dfs(int id, int nowlevel){
     8     maxL = max(maxL, nowlevel); //记录最大层数
     9     if(child[id].empty())   //如果该点没有孩子表明其为叶子结点
    10         cnt[nowlevel]++;    //其对应层的叶子结点数量加一
    11     for(auto i : child[id]) //搜索其所有的孩子
    12         dfs(i, nowlevel + 1);
    13 }
    14 int main()
    15 {
    16     scanf("%d%d", &n, &m);  //输入总人数与非叶子结点数
    17     for(int i = 0; i < m; i++){ //输入所有非叶子结点信息
    18         int id, k;  //该点id与孩子数量k
    19         scanf("%d%d", &id, &k);
    20         for(int j = 0; j < k; j++){ //输入该点所有孩子
    21             int cid;
    22             scanf("%d", &cid);
    23             child[id].push_back(cid);   //记录该点的孩子
    24         }
    25     }
    26     dfs(1, 0);  //1为根结点,由根结点第0层开始搜索
    27     for(int i = 0; i <= maxL; i++){
    28         if(i != 0)
    29             printf(" ");
    30         printf("%d", cnt[i]);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    java中JSON转换
    使用Admin监控
    linux安装tomcat
    SpringBoot整合Redis
    linux6.8安装docker
    使用Actuator监控
    SpringBoot集成阿里巴巴Druid监控
    使用Log4j日志处理
    SpringBoot多数据源
    SpringBoot文件上传下载
  • 原文地址:https://www.cnblogs.com/suvvm/p/10645330.html
Copyright © 2011-2022 走看看