题目:
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
思路1: We can solve this easily using recursion. Why? Because each of the leftChild and rightChild of a node is a sub-tree itself. We first compute the max height of left sub-tree, then compute the max height of right sub-tree. Therefore, the max height of the current node is the greater of the two max heights + 1. For the base case, the current node is NULL, we return zero. NULL signifies there is no tree, therefore its max height is zero.
代码:(DFS--迭代):
class Solution {
public:
int maxDepth(TreeNode *root) {
if(root == NULL) return 0;
return 1 + max(maxDepth(root->left), maxDepth(root->right));
}
};
或者用下面一种比较笨的方法来在遍历的过程中更新最大class Solution {
public:
void helper(TreeNode *root, int count, int &maxDep){
if (root == NULL) maxDep = max(count, maxDep);
else{
count+=1;
helper(root->left, count, maxDep);
helper(root->right, count, maxDep);
}
}
int maxDepth(TreeNode *root) {
if (root == NULL) return 0;
int maxDep = 0;
int count = 0;
helper(root, count, maxDep);
return maxDep;
}
思路2: 对于iteratively的解法,我们有三种解法:pre-order, in-order, and post-order all as DFS. 前序遍历和中序遍历更容易实现,但是有可能会在一个node被pop出stack的时候在这个node上面几层跳出循环。但是后序遍历可以保证在一个node被pop出去的时候返回恰好这个node上面一层。所以我们可以用后序遍历来做这个题。We keep track of the current depth and update the maximum depth as we traverse the tree.
代码:
class Solution {
public:
int maxDepth(TreeNode *root) {
if(root == NULL) return 0;
stack<TreeNode*> s;
s.push(root);
int maxDep = 0;
TreeNode *prev = NULL;
while(!s.empty()){
TreeNode* curr = s.top();
if (!prev || prev->left == curr || prev->right == curr){
if (curr->left) s.push(curr->left);
else if (curr->right) s.push(curr->right);
}
else if (curr->left == prev){
if (curr->right) s.push(curr->right);
}
else s.pop();
prev = curr;
if (s.size()>maxDep) maxDep = s.size();
}
return maxDep;
}
};
思路3:第三种解法是BFS, BFS的解法可以很直观。每次一层结束的时候就把层数加一。 重点是queue和每一层节点数的记录。
代码:
class Solution {
public:
int maxDepth(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if( root == NULL) return 0;
queue<TreeNode*> q;
q.push(root);
int count = q.size();
int maxDep = 0;
while(!q.empty())
{
count--;
if( count == 0 )
maxDep++;
TreeNode* p = q.front();
q.pop();
if( p->left) q.push(p->left);
if( p->right ) q.push(p->right);
if( count == 0 ) count = q.size();
}
return maxDep;
}
};