zoukankan      html  css  js  c++  java
  • (转)C 语言高效编程的几招

    编写高效简洁的C语言代码,是许多软件工程师追求的目标。本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教。

    第 1 招:以空间换时间

    计算机程序中最大的矛盾是空间和时间的矛盾,那么从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招--以空间换时间。

    例如:字符串的赋值。

    方法 A,通常的办法:

    #define LEN 32

    char string1 [LEN];

    memset (string1,0,LEN);

    strcpy (string1,"This is an example!!"

    方法 B:

    const char string2[LEN]="This is an

    char*cp;

    cp=string2;

    (使用的时候可以直接用指针来操作。)

    从上面的例子可以看出,A和 B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而 A 需要调用两个字符函数才能完成。B的缺点在于灵活性没有 A好。在需要频繁更改一个字符串内容的时候,A 具有更好的灵活性;如果采用方法 B,则需要预存许多字符串,虽然占用了
    大量的内存,但是获得了程序执行的高效率。

    如果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。该招数的边招--使用宏函数而不是函数。举例如下:

    方法C:

    #define bwMCDR2_ADDRESS 4

    #define bsMCDR2_ADDRESS 17

    int BIT_MASK (int_bf)

    {

    return ((IU<<(bw##_bf))-1)<<(bs##_bf);

    }

    void SET_BITS(int_dst,int_bf,int_val)

    {

    _dst=((_dst) & ~ (BIT_MASK(_bf)))I\

    (((_val)<<<(bs##_bf))&(BIT_MASK(_bf)))

    }

    SET_BITS (MCDR2,MCDR2_ADDRESS,RegisterNumber);

    方法D:

    #define bwMCDR2_ADDRESS 4

    #define bsMCDR2_ADDRESS 17

    #define bmMCDR2_ADDRESS BIT_MASK

    (MCDR2_ADDRESS)

    #define BIT_MASK(_bf)(((1U<<(bw##_bf))-1)<<

    (bs##_bf)

    #define SET_BITS(_dst,_bf,_val)\

    ((_dst)=((_dst)&~(BIT_MASK(_bf)))I

    (((_val)<<(bs##_bf))&(BIT_MASK(_bf))))

    SET_BITS(MCDR2,MCDR2_ADDRESS,RegisterNumber);

    函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函数的时候,该现象尤其突出。

    函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函数的时候,该现象尤其突出。

    D方法是我看到的最好的置位操作函数,是 ARM 公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。

    第 2 招:数学方法解决问题

    现在我们演绎高效C 语言编写的第二招--采用数学方法来解决问题。数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。

    举例如下,求 1~100 的和。

    方法E

    int I,j;

    for (I=1; I<=100; I++){

    j+=I;

    }

    方法 F

    int I;

    I=(100*(1+100))/2

    这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 Nx(N+1)/2来解决这个问题。方法E 循环了 100次才解决问题,也就是说最少用了 100个赋值、100个判断、200个加法(I和 j);而方法F仅仅用了 1 个加法、1个乘法、1 次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。

    这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 Nx(N+1)/2来解决这个问题。方法E 循环了 100次才解决问题,也就是说最少用了 100个赋值、100个判断、200个加法(I和 j);而方法F仅仅用了 1 个加法、1个乘法、1 次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。

    第 3 招:使用位操作

    实现高效的C 语言编写的第三招--使用位操作,减少除法和取模的运算。

    在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作

    是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例台如下:

    方法 G

    int I,J;

    I=257/8;

    J=456%32;

    方法 H

    int I,J;

    I=257>>3;

    J=456-(456>>4<<4);

    在字面上好象 H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法 G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存器参与运算;而方法
    H则仅仅是几句相关的汇编,代码更简洁、效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C,ARM C来看,效率的差距还是不小。相关汇编代码就不在这里列举了。运用这招需要注意的是,因为 CPU 的不同而产生的问题。比如说,在 PC 上用这招编写的程序,并在 PC 上调试通过,在移植到一个 16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

    在字面上好象 H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法 G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存器参与运算;而方法
    H则仅仅是几句相关的汇编,代码更简洁、效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C,ARM C来看,效率的差距还是不小。相关汇编代码就不在这里列举了。运用这招需要注意的是,因为 CPU 的不同而产生的问题。比如说,在 PC 上用这招编写的程序,并在 PC 上调试通过,在移植到一个 16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

    第 4 招:汇编嵌入

    高效C 语言编程的必杀技,第四招--嵌入汇编。

    “在熟悉汇编语言的人眼里,C语言编写的程序都是垃圾”。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法--嵌入汇编、混合编程。

    举例如下,将数组一赋值给数组二,要求每一个字节都相符。char string1[1024], string2[1024];

    方法 I

    int I;

    for (I=0; I<1024; I++)

    *(string2+I)=*(string1+I)

    方法 J
    #int I;
    for(I=0; I<1024; I++)
    *(string2+I)=*(string1+I);
    #else

    #ifdef_ARM_

    _asm

    {

    MOV R0,string1

    MOV R1,string2

    MOV R2,#0

    loop:

    LDMIA R0!,[R3-R11]

    STMIA R1!,[R3-R11]

    ADD R2,R2,#8

    CMP R2, #400

    BNE loop

    }

    #endif

    方法 I是最常见的方法,使用了 1024次循环;方法J则根据平台不同做了区分,在 ARM 平台下,用嵌入汇编仅用 128次循环就完成了同样的操作。这里有朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0 的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个例程典型应用于 LCD数据的拷贝过程根据不同的 CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。

    方法 I是最常见的方法,使用了 1024次循环;方法J则根据平台不同做了区分,在 ARM 平台下,用嵌入汇编仅用 128次循环就完成了同样的操作。这里有朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0 的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个例程典型应用于 LCD数据的拷贝过程根据不同的 CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。

    虽然是必杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙、险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用,切记。

    使用C 语言进行高效率编程,我的体会仅此而已。在此已本文抛砖引玉,还请各位高手共同切磋。希望各位能给出更好的方法,大家一起提高我们的编程技巧。

  • 相关阅读:
    ubuntu安装pgAdmin 4
    python 读取文件
    byobu copy
    vim快捷键汇总
    python 停止线程
    python执行外部命令并获取输出
    gevent mysql
    python类型转换
    量化交易
    Java集合:HashMap底层实现和原理(源码解析)
  • 原文地址:https://www.cnblogs.com/tdyizhen1314/p/2431131.html
Copyright © 2011-2022 走看看