当我们要可视化事故数量时,其想法是根据部门的人员进行标准化。
我们将从恢复底图开始
library(rgdal) library(sp) library(data.table) library(dplyr) library(plyr) destfile="GEOFLA.tar.gz") untar("GEOFLA.tar.gz")
这些数据包含人口。所以我们要按部门汇总
dep@data <- inner_join(dep@data, pop) dep@data <- inner_join(dep@data, superficie) dep@data$POPULATION <- dep@data$POPULATION * 1000
然后我们将恢复道路事故数据
acc_caract$dep[which(acc_caract$dep %in% "201")] <- "2A0" acc_caract$dep[which(acc_caract$dep %in% "202")] <- "2B0" acc_caract$dep <- substr(acc_caract$dep, 1, 2)
现在,我们可以按年份、按部门(或按时间汇总)进行计数
data_plot <- c( "2010_2015" = dep_with_nb_acc(acc_caract, dep,nb_an = 6), "2010_2015_n" = dep_with_nb_acc(acc_caract, dep,nb_an = 6,normalize=TRUE))
第一个是超过6年的事故数量,已按人群归一化(可以将其视为人身伤害的频率)
zmax = max(data_plot[[1]]@data$freq_par_hab) spplot(obj = data_plot$'2010_2015',"freq_par_hab",at = seq(0, zmax, by = zmax/10),main = "")
我们也可以按频率进行标准化,以找出最危险的部门。我们还采用了对数。
zmin = min(data_plot[[8]]@data$freq_par_hab) zmax = max(data_plot[[8]]@data$freq_par_hab) spplot(obj = data_plot$'2010_2015_n',"freq_par_hab",at = seq(zmin, zmax, by = (zmax-zmin)/10),main = "")