zoukankan      html  css  js  c++  java
  • 找东西背后的概率问题

    找东西背后的概率问题

      我的书桌有8个抽屉,分别用数字1-8编号。每次拿到一份文件后,我都会把这份文件随机地放在某一个抽屉中。但我非常粗心,有1/5的概率会忘了把文件放进抽屉里,最终把这个文件搞丢。

      现在,我在找一份非常重要的文件。我将按顺序打开每一个抽屉,直到找到这份文件为止。考虑下面三个问题:

      1)假如我打开了第一个抽屉,发现里面没有我要的文件。这份文件在其余7个抽屉里的概率是多少?

      2)假如我翻遍了前4个抽屉,里面都没有我想要的文件。这份文件在剩下的4个抽屉里的概率是多少?

      3)假如我翻遍了前7个抽屉,里面都没有我要的文件。这份文件在最后一个抽屉的概率是多少?

      

      定义P(A)、P(B)为某条件下A、B独立发生的概率,P(A|B)为B发生的情况下A发生的概率。则P(A|B) = P(A^B)/P(B)。所以上述三个问题可以像下面这样求得答案:

      1)A为文件在其余7个抽屉,B为文件不在第1个抽屉。

        P(A) = 7/8,P(B) = 1/5 + (4/5)*(1/8),

        所以 P(A|B) = 7/9。

      2)、3)的解法同1)。

      一种更为巧妙的解法是如下:

      随机把文件放在10个抽屉里,但找文件时不允许打开最后2个抽屉。当我已经找过n个抽屉但仍没找到我想要的文件时,文件只能在剩下的10-n个抽屉里,但我只能打开剩下的8-n个抽屉,因此所求的概率是8-n/10-n。

  • 相关阅读:
    hdu_6836 Expectation
    hdu_6820 Tree
    luogu P1039 侦探推理
    自己动手实现区块链
    第六章 钱包管理界面和区块链浏览器
    第五章 自己动手写比特币之交易中继
    第四章 自己动手写比特币之钱包
    第三章 自己动手写区块链之交易
    第二章 工作量证明和挖矿
    第一章:最小可行区块链
  • 原文地址:https://www.cnblogs.com/tekkaman/p/4084300.html
Copyright © 2011-2022 走看看