zoukankan      html  css  js  c++  java
  • 【JVM进阶之路】七:垃圾收集器盘点

    在前面,我们已经了解了JVM的分代收集,知道JVM垃圾收集在新生代主要采用标记-复制算法,在老年代主要采用标记-清除标记-整理算法。接下来,我们看一看JDK默认虚拟机HotSpot的一些垃圾收集器的实现。

    1、常见垃圾回收器

    首先来看一下JDK 11之前全部可用的垃圾收集器。

    HotSpot虚拟机

    图中列出了七种垃圾收集器,连线表示可以配合使用,所在区域表示它是属于新生代收集器或是老年代收集器。

    这里还标出了垃圾收集器采用的收集算法,G1收集器比较特殊,整体采用标记-整理算法,局部采用标记-复制算法,后面再细讲。

    1.1、Serial收集器

    Serial收集器是最基础、历史最悠久的收集器。

    如同它的名字(串行),它是一个单线程工作的收集器,使用一个处理器或一条收集线程去完成垃圾收集工作。并且进行垃圾收集时,必须暂停其他所有工作线程,直到垃圾收集结束——这就是所谓的“Stop The World”。

    Serial/Serial Old收集器的运行过程如图:

    Serial/Serial Old收集器运行示意图

    1.2、ParNew收集器

    ParNew收集器实质上是Serial收集器的多线程并行版本,使用多条线程进行垃圾收集。

    ParNew收集器的工作过程如图所示:

    ParNew/Serial Old收集器运行示意图

    这里值得一提的是Par是Parallel(并行)的缩写,但需要注意的是,这个并行(Parallel)仅仅是描述同一时间多条GC线程协同工作,而不是GC线程和用户线程同时运行。ParNew垃圾收集也是需要Stop The World的。

    1.3、Parallel Scavenge收集器

    Parallel Scavenge收集器是一款新生代收集器,基于标记-复制算法实现,也能够并行收集。和ParNew有些类似,但Parallel Scavenge主要关注的是垃圾收集的吞吐量。

    所谓吞吐量指的是运行用户代码的时间与处理器总消耗时间的比值。这个比例越高,证明垃圾收集占整个程序运行的比例越小。

    吞吐量

    Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量:

    • -XX:MaxGCPauseMillis,最大垃圾回收停顿时间。这个参数的原理是空间换时间,收集器会控制新生代的区域大小,从而尽可能保证回收少于这个最大停顿时间。简单的说就是回收的区域越小,那么耗费的时间也越小。
      所以这个参数并不是设置得越小越好。设太小的话,新生代空间会太小,从而更频繁的触发GC。

    • -XX:GCTimeRatio,垃圾收集时间与总时间占比。这个是吞吐量的倒数,原理和MaxGCPauseMillis相同。

    由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。

    1.4、Serial Old收集器

    Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。

    Serial Old收集器的工作过程如图:

    Serial/Serial Old收集器运行示意图

    1.5、Parallel Old收集器

    Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。

    Parallel Scavenge/Parallel Old收集器运行示意图

    1.6、CMS收集器

    CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,同样是老年代的收集齐,采用标记-清除算法。

    CMS收集齐的垃圾收集分为四步:

    • 初始标记(CMS initial mark):单线程运行,需要Stop The World,标记GC Roots能直达的对象。
    • 并发标记((CMS concurrent mark):无停顿,和用户线程同时运行,从GC Roots直达对象开始遍历整个对象图。
    • 重新标记(CMS remark):多线程运行,需要Stop The World,标记并发标记阶段产生对象。
    • 并发清除(CMS concurrent sweep):无停顿,和用户线程同时运行,清理掉标记阶段标记的死亡的对象。

    涉及到了多次标记的过程,这里插入一点三色抽象的知识。三色抽象用来描述对象在垃圾收集过程中的状态。

    通常白色代表对象未被扫描到,灰色表示对象被扫描到但未被处理,黑色表示对象及其后代已被处理。在CMS的标记和清除过程中就用到了这种抽象,详细的可以查看参考【5】。

    Concurrent Mark Sweep收集器运行示意图如下:

    Concurrent Mark Sweep收集器运行示意图

    优点:CMS最主要的优点在名字上已经体现出来——并发收集、低停顿。

    缺点:CMS同样有三个明显的缺点。

    • Mark Sweep算法会导致内存碎片比较多

    • CMS的并发能力比较依赖于CPU资源,并发回收时垃圾收集线程可能会抢占用户线程的资源,导致用户程序性能下降。

    • 并发清除阶段,用户线程依然在运行,会产生所谓的理“浮动垃圾”(Floating Garbage),本次垃圾收集无法处理浮动垃圾,必须到下一次垃圾收集才能处理。如果浮动垃圾太多,会触发新的垃圾回收,导致性能降低。

    1.7、Garbage First收集器

    Garbage First(简称G1)收集器是垃圾收集器的一个颠覆性的产物,它开创了局部收集的设计思路和基于Region的内存布局形式。

    虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异。以前的收集器分代是划分新生代、老年代、持久代等。

    垃圾分代区域

    G1把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理。

    G1 Heap Regions

    这样就避免了收集整个堆,而是按照若干个Region集进行收集,同时维护一个优先级列表,跟踪各个Region回收的“价值,优先收集价值高的Region。

    G1收集器的运行过程大致可划分为以下四个步骤:

    • 初始标记(initial mark),标记了从GC Root开始直接关联可达的对象。STW(Stop the World)执行。

    • 并发标记(concurrent marking),和用户线程并发执行,从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象、

    • 最终标记(Remark),STW,标记再并发标记过程中产生的垃圾。

    • 筛选回收(Live Data Counting And Evacuation),制定回收计划,选择多个Region 构成回收集,把回收集中Region的存活对象复制到空的Region中,再清理掉整个旧 Region的全部空间。需要STW。

    G1收集器运行示意图

    相比CMS,G1的优点有很多,可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集。

    只从内存的角度来看,与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region 之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。

    2、前沿垃圾回收器

    2.1、ZGC收集器

    在JDK 11当中,加入了实验性质的ZGC。它的回收耗时平均不到2毫秒。它是一款低停顿高并发的收集器。

    与CMS中的ParNew和G1类似,ZGC也采用标记-复制算法,不过ZGC对该算法做了重大改进:ZGC在标记、转移和重定位阶段几乎都是并发的,这是ZGC实现停顿时间小于10ms目标的最关键原因。

    ZGC垃圾回收周期

    ZGC虽然在JDK 11还处于实验阶段,但由于算法与思想是一个非常大的提升,未来前景相信还是很广阔的。

    3、垃圾收集器选择

    3.1、收集器选择权衡

    垃圾收集器的选择需要权衡的点还是比较多的——例如运行应用的基础设施如何?使用JDK的发行商是什么?等等……

    这里简单地列一下上面提到的一些收集器的适用场景:

    • Serial :如果应用程序有一个很小的内存空间(大约100 MB)亦或它在没有停顿时间要求的单线程处理器上运行。
    • Parallel:如果优先考虑应用程序的峰值性能,并且没有时间要求要求,或者可以接受1秒或更长的停顿时间。
    • CMS/G1:如果响应时间比吞吐量优先级高,亦或垃圾收集暂停必须保持在大约1秒以内。
    • ZGC:如果响应时间是高优先级的,亦或堆空间比较大。

    3.1、设置垃圾收集器

    设置垃圾收集器(组合)的参数如下:

    新生代 老年代 JVM 参数
    Incremental Incremental -Xincgc
    Serial Serial -XX:+UseSerialGC
    Parallel Scavenge Serial -XX:+UseParallelGC -XX:-UseParallelOldGC
    Parallel New Serial N/A
    Serial Parallel Old N/A
    Parallel Scavenge Parallel Old -XX:+UseParallelGC -XX:+UseParallelOldGC
    Parallel New Parallel Old N/A
    Serial CMS -XX:-UseParNewGC -XX:+UseConcMarkSweepGC
    Parallel Scavenge CMS N/A
    Parallel New CMS -XX:+UseParNewGC -XX:+UseConcMarkSweepGC
    G1 -XX:+UseG1GC

    参考:

    【1】:周志朋编著《深入理解Java虚拟机:JVM高级特性与最佳实践》

    【2】:《垃圾回收算法手册 自动内存管理的艺术》

    【3】:Garbage Collection in Java – What is GC and How it Works in the JVM

    【4】:Java Hotspot G1 GC的一些关键技术

    【5】:GC Algorithms: Implementations

    【6】:新一代垃圾回收器ZGC的探索与实践

  • 相关阅读:
    SQL server多表联合查询
    Linux at命令
    git用法总结详细
    vue插槽
    vue组件通信
    vue高阶函数
    vue过滤器
    vue侦听器watch
    Vue 计算属性 computed
    Spring事务失效的场景
  • 原文地址:https://www.cnblogs.com/three-fighter/p/14599218.html
Copyright © 2011-2022 走看看