Day1:T1
考场上觉得第二题比较水,于是就果断地跳进第二题的坑了,结果部分分都没来的及拿...
f[i][l]:用了i-n的数,这段子序列开始位置为l的方案数
考虑新加的一个数x,设原序列为S,
那么只会有三种放法:xSx,xxS,Sxx
对于限制条件,为了方便先把大于转小于
考虑三种转移
对于xSx:
f[i][l]+=f[i+1][l+1]
不能有以下限制:
h[l]<h[r],h[r]<h[l]
h[x]<=h[l],h[x]<=h[r] (l+1<=x<=r-1)
对于xxS:
f[i][l]+=f[i+1][l+2]
不能有以下限制:
h[l]<h[l+1] ,h[l+1]<h[l]
h[x]<=h[l],h[x]<=h[l+1] (l+2<=x<=r)
对于Sxx:
f[i][l]+=f[i+1][l]
不能有以下限制:
h[r]<h[r-1],h[r-1]<h[r]
h[x]<=h[r-1],h[x]<=h[r] (l<=x<=r-2)
对于小于号的条件直接判
对于小于等于号的条件,开一个二维前缀和数组,
那么就相当于判矩形内是否有点,有则不成立
#include<cstdio> #include<cstring> #include<algorithm> const int maxn=2010; using namespace std; int n,m,s[maxn][maxn];long long f[maxn][maxn];bool t[maxn][maxn];char str[5]; int get(int x1,int y1,int x2,int y2){return s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1];} void prework(){ memset(t,0,sizeof(t)),memset(s,0,sizeof(s)); for (int i=1,a,b;i<=m;i++){ scanf("%d%s%d",&a,str,&b); if (str[0]=='>') swap(a,b),str[0]='<'; ++s[a][b]; if (str[0]=='=') ++s[b][a]; else if (!str[1]) t[a][b]=1; } for (int i=1;i<=n*2;i++) for (int j=1;j<=n*2;j++) s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1]; } void dp(){ memset(f,0,sizeof(f)); for (int i=1;i<=(n<<1)-1;i++) f[n][i]=(!t[i][i+1]&&!t[i+1][i]); for (int i=n-1;i;i--) for (int l=1,r=(n-i+1)*2;r<=n*2;l++,r++){ if (!t[l][r]&&!t[r][l]&&!get(l+1,l,r-1,l)&&!get(l+1,r,r-1,r))//xSx f[i][l]+=f[i+1][l+1]; if (!t[l][l+1]&&!t[l+1][l]&&!get(l+2,l,r,l+1))//xxS f[i][l]+=f[i+1][l+2]; if (!t[r-1][r]&&!t[r][r-1]&&!get(l,r-1,r-2,r))//Sxx f[i][l]+=f[i+1][l]; } long long ans=f[1][1]%(1ll<<60); if (ans<0) ans+=(1ll<<60); printf("%I64d ",ans); } int main(){ //freopen("dragon.in","r",stdin); freopen("dragon.out","w",stdout); while (scanf("%d%d",&n,&m)!=EOF) prework(),dp(); return 0; }
正解是考虑上1/8圆,x++时,y有可能-1,也有可能不减。
怎么避免大数开根呢,画图可知,只要判断(x+1,y-0.5)在圆内还是圆外即可
判圆内圆外就用x*x+y*y-r*r是小于0还是大于0
这样就可以通过只算乘法解决了
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> const int mod=1000000007; using namespace std; typedef long long ll; ll r,r2,lim;int ans; int main(){ //freopen("circle.in","r",stdin);freopen("circle.out","w",stdout); scanf("%I64d",&r),r2=r*r,lim=(int)round(sqrt(1.0*r2/2)); ans=((int)round(sqrt(r2-lim*lim)))%mod; if (ans>lim) ans+=lim,ans%=mod; else if (ans<lim) ans=0; ans+=((lim*(lim-1)/2)%mod),ans%=mod; ans+=r,ans%=mod; for (int x=0,y=r;x<lim-1;x++){ //if (1ll*x*x+2ll*x+1ll*y*y-y-1ll*r*r+1>=0) y--; if (1.0*x*x+2.0*x+1.0*y*y-1.0*y+5.0/4.0-1.0*r2>0) y--; ans+=y,ans%=mod; } printf("%d ",ans); return 0; }
T3:恶心的SPFA题,考场上这题没写部分分,又坑了...
对于没有怪兽的情况,跑双关键字SPFA即可
对于怪兽的格子,因为怪兽只有一次伤害,所以对于与怪兽相邻的点,两两连距离为2,伤害为周围其他怪兽的伤害的边即可。
对于陷阱,就做点权即可。
细节比较多,还必须写Dijkstra+Heap优化才可以过...
#include<queue> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define fi first #define se second #define mp(a,b) make_pair(a,b) #define PI pair<int,int> #define abs(a) (a>=0?a:-(a)) const int maxn=505,maxq=maxn*maxn*10,maxm=1100000; const int dx[]={-maxn,-1,maxn,1}; using namespace std; int n,m,stx,sty,edx,edy,pre[maxm],now[maxn*maxn],son[maxm],tot,st,ed;char map[maxn*maxn],s[maxn][maxn]; PI dis[maxn*maxn],val[maxm]; int P(int x,int y){return x*maxn+y;} PI D(int x){return mp(x/maxn,x%maxn);} void add(int a,int b,int bl,int dis){pre[++tot]=now[a],now[a]=tot,son[tot]=b,val[tot]=mp(bl,dis);} bool check(int x){ int a=x/maxn,b=x%maxn; if (a>n||a<=0||b>m||b<=0||map[x]=='#') return 0; return 1; } bool near(int a,int b){ int x1=D(a).fi,y1=D(a).se,x2=D(b).fi,y2=D(b).se; if (abs(x1-x2)+abs(y1-y2)<=1) return 1; return 0; } PI operator +(PI a,PI b){return mp(a.fi+b.fi,a.se+b.se);} struct node{ int x,b,d; node( int x, int b, int d ){this->x=x,this->b=b,this->d=d;} bool operator <(const node & xx)const{ if (b!=xx.b) return b>xx.b; return d>xx.d; } }; void spfa(){ priority_queue<node> q; q.push(node(st,0,0)); memset(dis,63,sizeof(dis)); dis[st]=mp(0,0); while (!q.empty()){ int x=q.top().x; if (x==ed) break; q.pop(); for (int y=now[x];y;y=pre[y]){ PI tmp=dis[x]+val[y]; if (islower(map[son[y]])) tmp.fi+=map[son[y]]-'a'+1; if (dis[son[y]]>tmp){ dis[son[y]]=tmp; q.push(node(son[y],tmp.fi,tmp.se)); } } } printf("%d %d ",dis[ed].fi,dis[ed].se); } void prework(){ for (int i=1;i<=n;i++)//not monster for (int j=1;j<=m;j++){ int x=P(i,j); if (map[x]=='#'||isupper(map[x])) continue; for (int k1=0;k1<=3;k1++){ int x1=x+dx[k1]; if (!check(x1)||isupper(map[x1])) continue; int bl=0; for (int k2=0;k2<=3;k2++){ int x2=x1+dx[k2]; if (!check(x2)) continue; if (isupper(map[x2])) bl+=map[x2]-'A'+1; } add(x,x1,bl,1); } } for (int i=1;i<=n;i++)//monster for (int j=1;j<=m;j++){ int x=P(i,j); if (isupper(map[x])){ for (int k1=0;k1<=3;k1++){ int x1=x+dx[k1]; if (!check(x1)) continue; for (int k2=0;k2<=3;k2++) if (k2!=k1){ int x2=x+dx[k2]; if (!check(x2)) continue; int bl=0; for (int k3=0;k3<=3;k3++){ int x3=x2+dx[k3]; if (!check(x3)||near(x1,x3)) continue; if (isupper(map[x3])) bl+=map[x3]-'A'+1; } add(x1,x2,bl,2); } } } } } int main(){ memset(map,'#',sizeof(map)); scanf("%d%d",&n,&m),scanf("%d%d%d%d",&stx,&sty,&edx,&edy),st=P(stx,sty),ed=P(edx,edy); for (int i=1;i<=n;i++) scanf("%s",s[i]+1); for (int i=0;i<=n+1;i++) for (int j=0;j<=m+1;j++) map[P(i,j)]=s[i][j]; prework(),spfa(); return 0; }
Day2:T1树形DP。
设f[i][j]表示i号节点子树中距离为j的点的权值和,这可以递推求出。
然后对于每组询问(p,d),就是子树中距离为d的点和+向上走i步的父亲的子树中距离为d-i的点的和 再减去走了回头路的点即可
#include<cstdio> #include<cstring> #include<algorithm> #define ls (j<<1) #define rs ((j<<1)|1) const int maxn=280000,maxt=44; typedef long long ll; using namespace std; int n,Q,a[maxn],pow[maxt],dep,dis;ll ans,f[maxn][maxt]; int main(){ freopen("dream.in","r",stdin);freopen("dream.out","w",stdout); scanf("%d%d",&n,&Q); pow[0]=1;for (int i=1;i<=maxt-1;i++) pow[i]=pow[i-1]<<1; for (int i=0;i<=maxt-1;i++) if (pow[i]-1==n){dep=i;break;} for (int i=1;i<=n;i++) scanf("%d",&a[i]); for (int i=pow[dep-1];i<pow[dep];i++) f[i][0]=a[i]; for (int i=dep-1;i>=0;i--) for (int j=pow[i-1];j<pow[i];j++){ f[j][0]=a[j]; for (int k=1;k<=dep;k++) f[j][k]=f[j*2][k-1]+f[j*2+1][k-1]; } // for (int i=1;i<=3;i++) printf("%d ",f[3][i]);puts("fuck"); for (int i=1,p,d;i<=Q;i++){ scanf("%d%d",&p,&d),ans=f[p][d]; if (d==0){printf("%d ",a[p]);continue;} for (dis=0;pow[dis]<=p;dis++);dis--; if (d>dep+dis-1){puts("0");continue;} if (dis==0){printf("%I64d ",ans);continue;} int ed=min(dis,d); for (int j=1;j<ed;j++){ ans+=f[p>>j][d-j]; //printf("%d ",ans); ans-=f[p>>(j-1)][d-j-1]; //printf("%d ",ans); } if (d<=dis) ans+=a[p>>d]; else{ ans+=f[1][d-dis]; ans-=f[p>>(dis-1)][d-dis-1]; } printf("%I64d ",ans); } return 0; }
T2:数论题,大致思路是类比辗转相除法,由f(a,b,l,r)得到f(b,a%b,x,y)就可以loga时间求出,但是推导过程想法很神...只知道推出来是对的,但是还不知道怎么想到这样推...考场上只拿了20分,不应该不拿另外40分部分分。
#include<cstdio> #include<cstring> #include<algorithm> const int inf=2e9+10; using namespace std; ll a,b,s,l,r;int ans; int gcd(int a,int b){return !b?a:gcd(b,a%b);} int f(int a,int b,int l,int r){ if (!l) return 0; if (r/a>(l-1)/a) return (l-1)/a+1; int t=f(b,a%b,a-r%a,b-r%b); return (l+1ll*b*t-1)/a+1; } int getans(int a,int b,int l,int r){ if (!a) return l?inf:0; int t=gcd(a,b);if (r/g==(l-1)/g) return inf; return f(a,b,l,r); } int main(){ //freopen("ice.in","r",stdin);freopen("ice.out","w",stdout); scanf("%d",&T); while (T--){ scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&s,&l,&r); l-=s,r-=s,a%=b; /*if (l>r) r+=b; if (r>=b) r-=b,l-=b; if (r<=b) r+=b,l+=b;*/ if(l>r) r+=b; l-=s,r-=s; if(r>=b) r-=b,l-=b; if(r<0) r+=b,l+=b; if (l>=0) ans=getans(a,b,l,r); else ans=min(getans(a,b,0,r),getans(a,b,l+b,b-1)); if (ans==inf) puts("Poor PPS."); else printf("%d ",ans); } return 0; }
T3:考场上看到这题就放弃了,其实就是找黑白连通块数目就可以区分10个人了,剩下两个只要比较黑白区域的比例即可,代码也不是特别长。
#include<cstdio> #include<cstring> #include<algorithm> #define mp(a,b) make_pair(a,b) #define fi first #define se second #define PI pair<int,int> using namespace std; const int maxn=905,maxq=maxn*maxn*5; const int dx[]={1,1, 1,0, 0,-1,-1,-1}; const int dy[]={1,0,-1,1,-1, 1, 0,-1}; const char name[][15]={"Baekhyun","Chanyeol","Chen","D.O", "Kai","Kris","Lay","Luhan", "Sehun","Suho","Tao","Xiumin"}; const int bc[12]={9,5,1,1, 2,3,6,5, 5,2,2,5}; const int wc[12]={2,1,3,2, 13,1,2,8, 2,8,4,2}; int T,ans[2],cnt[2],cb,n,m,map[maxn][maxn],head,tail;bool bo[maxn][maxn]; PI q[maxq+10]; void bfs(int stx,int sty,int c){ head=0,q[tail=1]=mp(stx,sty),bo[stx][sty]=1; while (head!=tail){ if (++head>maxq) head=1; int x=q[head].fi,y=q[head].se; for (int i=0;i<8;i++){ int nx=x+dx[i],ny=y+dy[i]; if (map[nx][ny]!=c||bo[nx][ny]) continue; if (++tail>maxq) tail=1; q[tail]=mp(nx,ny),bo[nx][ny]=1; } } } int main(){ scanf("%d",&T); while (T--){ memset(bo,0,sizeof(bo)),memset(map,-1,sizeof(map)),cb=0,ans[0]=ans[1]=0; scanf("%d%d",&n,&m);int col=0,num,x=1,y=0; for (int i=1;i<=m;i++){ scanf("%d",&num),col^=1; if (!col) cb+=num; while (num--){ ++y;if (y>n) y=1,x++; map[x][y]=col; } } for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) if (!bo[i][j]) ans[map[i][j]]++,bfs(i,j,map[i][j]); if (ans[0]==5&&ans[1]==2){ if (cb*100<18*n*n) puts("Xiumin"); else puts("Sehun"); continue; } for (int i=0;i<12;i++) if (ans[0]==bc[i]&&ans[1]==wc[i]){printf("%s ",name[i]);break;} } return 0; }