zoukankan      html  css  js  c++  java
  • POJ-2533-Longest Ordered Subsequence(LIS模板)

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    
    注意:一般memset对数组赋0或-1,赋值其他的要用循环来实现
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    int main()
    {
        int n,i,j,a[1005],d[1005];
        while(scanf("%d",&n)!=EOF)
        {
            int sum=0;
    
            for(i=0; i<=n; i++)
            {
                d[i]=1;
            }
    
            for(i=1; i<=n; i++)
            {
                scanf("%d",&a[i]);
                for(j=1; j<i; j++)
                {
                    if(a[j]<a[i])
                        d[i]=max(d[i],d[j]+1);//依次遍历在它以前的元素,找出各个元素中标记的最长长度
                }
                sum=max(sum,d[i]);
            }
            printf("%d
    ",sum);
        }
        return 0;
    }
  • 相关阅读:
    Excel VBA 根据下拉框单元格的值来改变另一个下拉框单元格的值
    HTML Encode 和Decode
    端口号8080和8181被占用的解决方法!
    Eclipse中全局搜索和更替
    HTTP协议详解
    SQL server 常用语句
    50道 Sql语句题
    JAVA过滤器与SpringMVC拦截器之间的区别
    javaWeb中 servlet 、request 、response
    Java 中的 request 和response 区别
  • 原文地址:https://www.cnblogs.com/tianmin123/p/4651836.html
Copyright © 2011-2022 走看看