zoukankan      html  css  js  c++  java
  • Scalaz(18)- Monad: ReaderWriterState-可以是一种简单的编程语言

      说道FP,我们马上会联想到Monad。我们说过Monad的代表函数flatMap可以把两个运算F[A],F[B]连续起来,这样就可以从程序的意义上形成一种串型的流程(workflow)。更直白的讲法是:任何类型只要实现了flatMap就可以用for-comprehension, for{...}yield。在这个for{...}里我们可以好像OOP一样编写程序。这个for就是一种运算模式,它规范了在for{...}里指令的行为。我们正从OOP风格走入FP编程模式,希望有个最基本的FP编程模式使我们能够沿用OOP编程风格的语法和思维。Monad应该就是最合适的泛函数据类型了。我们先从最基本的开始:假如我们有一段行令程序:

    /*
    val a = e1
    val b = e2(a)
    val c = e3(a,b)
    val d = e2(c)
    */

    通过这些函数e1,e2,e3最后计算出d值。如果是用FP风格来编这段程序的话,首先我们必须把函数的结果d放入F[d]的F里。F就是上面所说的运算模式,在这里可以用大家熟悉的context(上下文)来表示。F必须是个Monad,F[]相当于for{...}yield。我们先试试用Id,虽然Id[A]对A不做任何处理,直接返回,好像没什么意义,但这种类型具备了map和flatMap,应该可以用for-comprehension:

     1 import scalaz._
     2 import Scalaz._
     3 def e1:Id[Int] = 10                               //> e1: => scalaz.Scalaz.Id[Int]
     4 def e2(a: Int): Id[Int] = a + 1                   //> e2: (a: Int)scalaz.Scalaz.Id[Int]
     5 def e3(a: Int, b: Int): Id[Int] = a + b           //> e3: (a: Int, b: Int)scalaz.Scalaz.Id[Int]
     6 for {
     7     a <- e1
     8     b <- e2(a)
     9     c <- e3(a,b)
    10     d <- e2(c)
    11 } yield d                                         //> res0: scalaz.Scalaz.Id[Int] = 22

    可以看到,在for-loop里就是OOP的行令程序。不过如果觉着这个Id没什么意义,可以试试Option看:

     1 import scalaz._
     2 import Scalaz._
     3 def e1:Option[Int] = 10.some                      //> e1: => Option[Int]
     4 def e2(a: Int): Option[Int] = (a + 1).some        //> e2: (a: Int)Option[Int]
     5 def e3(a: Int, b: Int): Option[Int] = (a + b).some//> e3: (a: Int, b: Int)Option[Int]
     6 for {
     7     a <- e1
     8     b <- e2(a)
     9     c <- e3(a,b)
    10     d <- e2(c)
    11 } yield d                                         //> res0: Option[Int] = Some(22)

    看,虽然换了个壳子(context), 但for-loop里的程序没有变化。换一句话讲就是for-loop里的程序根本不理会包裹的context。

    Reader也是一种Monad,用它又怎样呢:

     1 import scalaz._
     2 import Scalaz._
     3 def e1:Reader[Int,Int] = Reader[Int,Int](a => a)  //> e1: => scalaz.Reader[Int,Int]
     4 def e2(a: Int): Reader[Int,Int] = Reader[Int,Int](_ => a + 1)
     5                                                   //> e2: (a: Int)scalaz.Reader[Int,Int]
     6 def e3(a: Int, b: Int): Reader[Int, Int] = Reader[Int,Int](_ => a+b)
     7                                                   //> e3: (a: Int, b: Int)scalaz.Reader[Int,Int]
     8 val prg = for {
     9     a <- e1
    10     b <- e2(a)
    11     c <- e3(a,b)
    12     d <- e2(c)
    13 } yield d                                         //> prg  : scalaz.Kleisli[scalaz.Id.Id,Int,Int] = Kleisli(<function1>)
    14 prg.run(10)                                       //> res0: scalaz.Id.Id[Int] = 22

    虽然在语法上有些蹩脚,但还是证明了for-loop里的程序是不理会外面context的。那么我们可不可以说这个prg就是一个简单的FP编程语言。它把运算结果放在context里,直至运行了某种interpreter才能取得实际的运算值(用run(10)得到22)。当然,一段程序,它的运算行为受制于单一种类型的context可能有些弱了。如果需要获得一种可用的FP编程语言,我们可能还是要探讨如何把单一类型context组合成多类型混合的context。

    我们发现在scalaz里有些type class的名称是以T结束的如:ReaderT,WriterT,StateT等等。这个T指的是变形器Transformer,意思是用它可以堆砌(stacking)context。看看StateT,简单定义应该是这样的: 

    case class StateT[F[_],S,A](run: S => F[(S,A)])

    我们可以把F类堆砌在State上。实践证明如果这个F实现了flatMap,那么堆砌成的类型也能实现flatMap。好,scalaz的Option是实现了flatMap的,那么能不能把它和State堆砌在一起呢?堆砌而成的context会有什么效果呢?我们先看看单一Option和State作为一种context的效果:

     1 for {
     2   a <- 3.some
     3   b <- (None: Option[Int])
     4   c <- 4.some
     5 } yield c                                         //> res1: Option[Int] = None
     6 val statePrg = for {
     7   a <- get[Int]
     8   b <- State[Int,Int](s => (s, s + a))
     9   _ <- put(9)
    10 } yield b                                         //> statePrg  : scalaz.IndexedStateT[scalaz.Id.Id,Int,Int,Int] = scalaz.IndexedS
    11                                                   //| tateT$$anon$10@15ff3e9e
    12 statePrg.run(3)                                   //> res2: scalaz.Id.Id[(Int, Int)] = (9,6)

    依我来看,Option主要效果是在遇到None值时立即退出。而State的主要作用是在运算同时可以维护一个状态。那么如果把Option和State叠加起来就会同时具备这两种类型的特点了吧?也就是既能维护状态又能在遇到None值时立即终止运算退出了。首先验证一下用Option的flatMap来实现叠加context的flatMap:

     case class OptionState[S,A](run: S => Option[(S,A)]) {
       def map[B](f: A => B): OptionState[S,B] =
        OptionState { 
           s => run(s) map { case (s1,a1) => (s1,f(a1)) }
        }
       def flatMap[B](f: A => OptionState[S,B]): OptionState[S,B] =
        OptionState { 
           s => run(s) flatMap { case (s1,a1) => f(a1).run(s1) }
        }
     }

    是的,我们可以用Option的map和flatMap来实现OptionState的map和flatMap。当然,如果我们想在一个for-comprehension里同时使用Option和State就必须把它们升格成OptionState类型:

     def liftOption[S,A](oa: Option[A]): OptionState[S,A] = oa match {
      case Some(a) => OptionState {s => (s,a).some }
      case None => OptionState {_ => none}
     }
     def liftState[S,A](sa: State[S,A]): OptionState[S,A] =
        OptionState {s => sa(s).some}

    现在试试用叠加效果的for-comprehension:

     1 val osprg: OptionState[Int,Int] = for {
     2    a <- liftOption(3.some)
     3    b <- liftState(put(a))
     4    c <- liftState(get[Int])
     5    d <- liftState(State[Int,Int](s => (s+c, s+a)))
     6  } yield c                                        //> osprg  : Exercises.rws.OptionState[Int,Int] = OptionState(<function1>)
     7  osprg.run(2)                                     //> res3: Option[(Int, Int)] = Some((6,3))
     8  val osprg1: OptionState[Int,Int] = for {
     9    a <- liftOption(3.some)
    10    b <- liftState(put(a))
    11    _ <- liftOption((None: Option[Int]))
    12    c <- liftState(get[Int])
    13    d <- liftState(State[Int,Int](s => (s+c, s+a)))
    14  } yield c                                        //> osprg1  : Exercises.rws.OptionState[Int,Int] = OptionState(<function1>)
    15  osprg1.run(2)                                    //> res4: Option[(Int, Int)] = None

    看,既可以维护状态又具备None处理机制。

    好了,scalaz里有个ReaderWriterState这么个type class,就是一个Reader+Writer+State堆砌的Monad。相信scalaz特别提供了这么个type class应该有它的用意。我的猜想是这个Monad是个功能比较完整的组合Monad。作为for-comprehension的context应该能提供比较全面的效果。从字意上解释就是在由它形成的Monadic编程语言里可以同时提供运算(compute)、跟踪(logging)和状态维护功能。它的基础类型是IndexedReaderWriterStateT:scalaz/package.scala

      type ReaderWriterStateT[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]
      object ReaderWriterStateT extends ReaderWriterStateTInstances with ReaderWriterStateTFunctions {
        def apply[F[_], R, W, S, A](f: (R, S) => F[(W, A, S)]): ReaderWriterStateT[F, R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A] { (r: R, s: S) => f(r, s) }
      }
      type IndexedReaderWriterState[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[Id, R, W, S1, S2, A]
      object IndexedReaderWriterState extends ReaderWriterStateTInstances with ReaderWriterStateTFunctions {
        def apply[R, W, S1, S2, A](f: (R, S1) => (W, A, S2)): IndexedReaderWriterState[R, W, S1, S2, A] = IndexedReaderWriterStateT[Id, R, W, S1, S2, A] { (r: R, s: S1) => f(r, s) }
      }
      type ReaderWriterState[-R, W, S, A] = ReaderWriterStateT[Id, R, W, S, A]
      object ReaderWriterState extends ReaderWriterStateTInstances with ReaderWriterStateTFunctions {
        def apply[R, W, S, A](f: (R, S) => (W, A, S)): ReaderWriterState[R, W, S, A] = IndexedReaderWriterStateT[Id, R, W, S, S, A] { (r: R, s: S) => f(r, s) }
      }
      type IRWST[F[_], -R, W, -S1, S2, A] = IndexedReaderWriterStateT[F, R, W, S1, S2, A]
      val IRWST: IndexedReaderWriterStateT.type = IndexedReaderWriterStateT
      type IRWS[-R, W, -S1, S2, A] = IndexedReaderWriterState[R, W, S1, S2, A]
      val IRWS: IndexedReaderWriterState.type = IndexedReaderWriterState
      type RWST[F[_], -R, W, S, A] = ReaderWriterStateT[F, R, W, S, A]
      val RWST: ReaderWriterStateT.type = ReaderWriterStateT
      type RWS[-R, W, S, A] = ReaderWriterState[R, W, S, A]
      val RWS: ReaderWriterState.type = ReaderWriterState

    如果把Reader,Writer,State款式分开来对比分析的话:

    case class Reader[R, A](f: R => A)     //传入R,返回A后不理会R
    case class Writer[W, A](w: (W, A))     //直接返回W,A
    case class State[S, A](f: S => (A, S)) //传入S, 返回A和S

    那么把以上三个结合起来后它的款式应该是这样的了吧:

    case class ReaderWriterState[R, W, S, A](
              run: (R, S) => (W, A, S)  //传入R,S 返回W,A,S
    ) 
    case class ReaderWriterStateT[F[_],R, W, S, A](
              run: (R, S) => F[(W, A, S)]  //传入R,S 返回W,A,S。只是包在了F内
    ) 

    传入的和返回的类型是匹配的。在scalaz里是这样定义的:scalaz/ReaderWriterStateT.scala

    /** A monad transformer stack yielding `(R, S1) => F[(W, A, S2)]`. */
    sealed abstract class IndexedReaderWriterStateT[F[_], -R, W, -S1, S2, A] {
      self =>
      def run(r: R, s: S1): F[(W, A, S2)]
    
      /** Discards the writer component. */
      def state(r: R)(implicit F: Functor[F]): IndexedStateT[F, S1, S2, A] =
        IndexedStateT((s: S1) => F.map(run(r, s)) {
          case (w, a, s1) => (s1, a)
        })
    
      /** Calls `run` using `Monoid[S].zero` as the initial state */
      def runZero[S <: S1](r: R)(implicit S: Monoid[S]): F[(W, A, S2)] =
        run(r, S.zero)
    
      /** Run, discard the final state, and return the final value in the context of `F` */
      def eval(r: R, s: S1)(implicit F: Functor[F]): F[(W, A)] =
        F.map(run(r,s)) { case (w,a,s2) => (w,a) }
    
      /** Calls `eval` using `Monoid[S].zero` as the initial state */
      def evalZero[S <: S1](r:R)(implicit F: Functor[F], S: Monoid[S]): F[(W,A)] =
        eval(r,S.zero)
    
      /** Run, discard the final value, and return the final state in the context of `F` */
      def exec(r: R, s: S1)(implicit F: Functor[F]): F[(W,S2)] =
        F.map(run(r,s)){case (w,a,s2) => (w,s2)}
    
      /** Calls `exec` using `Monoid[S].zero` as the initial state */
      def execZero[S <: S1](r:R)(implicit F: Functor[F], S: Monoid[S]): F[(W,S2)] =
        exec(r,S.zero)
    ...

    我们看到IndexedReaderWriterStateT已经实现了很多IndexedStateT的运算方法如:eval,exec等。看看它的map和flatMap是怎么实现的:

    def map[B](f: A => B)(implicit F: Functor[F]): IndexedStateT[F, S1, S2, B] = IndexedStateT(s => F.map(apply(s)) {
        case (s1, a) => (s1, f(a))
    })
    def flatMap[S3, B](f: A => IndexedStateT[F, S2, S3, B])(implicit F: Bind[F]): IndexedStateT[F, S1, S3, B] = IndexedStateT(s => F.bind(apply(s)) {
        case (s1, a) => f(a)(s1)
    })

    与我们前面所做的OptionState例子一样:如果F能实现map和flatMap则IndexedReaderWriterStateT就能实现map和flatMap。为了省却在for-loop里每行命令都使用lift进行类型升格,IndexedReaderWriterStateT重新实现了大部分操作函数:

    private trait ReaderWriterStateTMonad[F[_], R, W, S]
      extends MonadReader[({type λ[r, α]=ReaderWriterStateT[F, r, W, S, α]})#λ, R]
      with MonadState[({type f[s, α] = ReaderWriterStateT[F, R, W, s, α]})#f, S]
      with MonadListen[({type f[w, α] = ReaderWriterStateT[F, R, w, S, α]})#f, W]
      with IndexedReaderWriterStateTFunctor[F, R, W, S, S] {
      implicit def F: Monad[F]
      implicit def W: Monoid[W]
    
      def bind[A, B](fa: ReaderWriterStateT[F, R, W, S, A])(f: A => ReaderWriterStateT[F, R, W, S, B]): ReaderWriterStateT[F, R, W, S, B] = fa flatMap f
      def point[A](a: => A): ReaderWriterStateT[F, R, W, S, A] =
        ReaderWriterStateT((_, s) => F.point((W.zero, a, s)))
      def ask: ReaderWriterStateT[F, R, W, S, R] =
        ReaderWriterStateT((r, s) => F.point((W.zero, r, s)))
      def local[A](f: R => R)(fa: ReaderWriterStateT[F, R, W, S, A]): ReaderWriterStateT[F, R, W, S, A] =
        ReaderWriterStateT((r, s) => fa.run(f(r), s))
      override def scope[A](k: R)(fa: ReaderWriterStateT[F, R, W, S, A]): ReaderWriterStateT[F, R, W, S, A] =
        ReaderWriterStateT((_, s) => fa.run(k, s))
      override def asks[A](f: R => A): ReaderWriterStateT[F, R, W, S, A] =
        ReaderWriterStateT((r, s) => F.point((W.zero, f(r), s)))
      def init: ReaderWriterStateT[F, R, W, S, S] =
        ReaderWriterStateT((_, s) => F.point((W.zero, s, s)))
      def get = init
      def put(s: S): ReaderWriterStateT[F, R, W, S, Unit] =
        ReaderWriterStateT((r, _) => F.point((W.zero, (), s)))
      override def modify(f: S => S): ReaderWriterStateT[F, R, W, S, Unit] =
        ReaderWriterStateT((r, s) => F.point((W.zero, (), f(s))))
      override def gets[A](f: S => A): ReaderWriterStateT[F, R, W, S, A] =
        ReaderWriterStateT((_, s) => F.point((W.zero, f(s), s)))
      def writer[A](w: W, v: A): ReaderWriterStateT[F, R, W, S, A] =
        ReaderWriterStateT((_, s) => F.point((w, v, s)))
      override def tell(w: W): ReaderWriterStateT[F, R, W, S, Unit] =
        ReaderWriterStateT((_, s) => F.point((w, (), s)))
      def listen[A](ma: ReaderWriterStateT[F, R, W, S, A]): ReaderWriterStateT[F, R, W, S, (A, W)] =
        ReaderWriterStateT((r, s) => F.map(ma.run(r, s)) { case (w, a, s1) => (w, (a, w), s1)})
    }

    我们示范用这个ReaderWriterState来写一段程序:模拟一段通讯端口使用程序并把使用情况记录下来。先传入一个端口号,在程序中可以重设使用的端口号:

    1   val program: ReaderWriterState[Config, List[String], Int, Int] = for {
    2     _   <- log("Start - r: %s, s: %s")
    3     res <- invokeService
    4     _   <- log("Between - r: %s, s: %s")
    5     _   <- setService(8,"Com8")
    6     _   <- invokeService
    7     _   <- log("Done - r: %s, s: %s")
    8   } yield res      //> program  : scalaz.RWS[Exercises.rws.Config,List[String],Int,Int] = scalaz.I
    9                    //| ndexedReaderWriterStateT$$anon$5@223191a6

    这倒像是一段高级语言写的程序。细节都在几个功能函数里。它们都必须返回ReaderWriterState类型:

     1   case class Config(var port: Int, var portName: String)
     2   def log[R, S](msg: String): RWS[R, List[String], S, Unit] =
     3     ReaderWriterState {
     4       case (r, s) => (msg.format(r, s) :: Nil, (), s) //.point[Identity]
     5     }                                             //> log: [R, S](msg: String)scalaz.RWS[R,List[String],S,Unit]
     6   def invokeService: ReaderWriterState[Config, List[String], Int, Int] =
     7     ReaderWriterState {
     8       case (cfg, invocationCount) => (
     9         List("Invoking service with port: " + cfg.portName),
    10         scala.util.Random.nextInt(100),
    11         invocationCount + 1
    12       ) //.point[Identity]
    13     }                                             //> invokeService: => scalaz.ReaderWriterState[Exercises.rws.Config,List[String
    14                                                   //| ],Int,Int]
    15   def setService(p: Int, n: String): ReaderWriterState[Config, List[String], Int, Int] =
    16     ReaderWriterState {
    17       case (cfg, invocationCount) => cfg.port=p; cfg.portName=n
    18         (List("Changing service port to " + cfg.portName),
    19           scala.util.Random.nextInt(100),
    20           invocationCount)
    21     }                                             //> setService: (p: Int, n: String)scalaz.ReaderWriterState[Exercises.rws.Confi
    22                                                   //| g,List[String],Int,Int]
    23 
    24   val program: ReaderWriterState[Config, List[String], Int, Int] = for {
    25     _   <- log("Start - r: %s, s: %s")
    26     res <- invokeService
    27     _   <- log("Between - r: %s, s: %s")
    28     _   <- setService(8,"Com8")
    29     _   <- invokeService
    30     _   <- log("Done - r: %s, s: %s")
    31   } yield res                                     //> program  : scalaz.RWS[Exercises.rws.Config,List[String],Int,Int] = scalaz.I
    32                                                   //| ndexedReaderWriterStateT$$anon$5@223191a6
    33 val r =   program run (Config(443,"Com3"), 0)     //> r  : scalaz.Id.Id[(List[String], Int, Int)] = (List(Start - r: Config(443,C
    34                                                   //| om3), s: 0, Invoking service with port: Com3, Between - r: Config(443,Com3)
    35                                                   //| , s: 1, Changing service port to Com8, Invoking service with port: Com8, Do
    36                                                   //| ne - r: Config(88,Com8), s: 2),68,2)
    37 println("Result: " + r._2)                        //> Result: 68
    38 println("Service invocations: " + r._3)           //> Service invocations: 2
    39 println("Log: %n%s".format(r._1.mkString("	", "%n	".format(), "")))
    40                                                   //> Log: 
    41                                                   //|     Start - r: Config(443,Com3), s: 0
    42                                                   //|     Invoking service with port: Com3
    43                                                   //|     Between - r: Config(443,Com3), s: 1
    44                                                   //|     Changing service port to Com8
    45                                                   //|     Invoking service with port: Com8
    46                                                   //|     Done - r: Config(88,Com8), s: 2

     

     

     

     

     

     

  • 相关阅读:
    设计模式-装饰器模式
    自定义 RestTemplate 异常处理 (转)
    Jackson 高级应用
    Jackson 的 基本用法
    Jackson转换为Collection、Array
    Jackson中处理map中的null key 或者null value 及实体字段中的null value
    sed
    MySQL server has gone away 异常
    nl命令
    线程池
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/5048905.html
Copyright © 2011-2022 走看看