zoukankan      html  css  js  c++  java
  • POJ1609 UVALive2815 UVA1196 ZOJ1787 Tiling Up Blocks【二维最长上升子序列+DP】

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 5882   Accepted: 2293

    Description

    Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows: 

    Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle. 
    It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'. 
    Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B. 

    Input

    Several sets of tiling blocks. The inputs are just a list of integers.For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, li and mi. In other words, a game box is just a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). 
    Note that n can be as large as 10000 and li and mi are in the range from 1 to 100. 
    An integer n = 0 (zero) signifies the end of input.

    Output

    For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star '*' to signify the end of 
    outputs.

    Sample Input

    3
    3 2
    1 1
    2 3
    5
    4 2
    2 4
    3 3
    1 1
    5 5
    0

    Sample Output

    2
    3
    *

    Source



    Regionals 2003 >> Asia - Kaohsiung


    问题链接POJ1609 UVALive2815 UVA1196 ZOJ1787 Tiling Up Blocks

    题意简述

    若干个积木,每个积木上面有凸起,下面有凹进去的部分。左边凸起与凹进去的个数是一样的,记为L;中间凸起与凹进去的个数也是一样的,记为M。
    对应的两个金木能堆起来,当且仅当L1>=L2并且M1>=M2,问最多能堆多高?

    问题分析:这是一个二维DP问题。递推式为:dp[i][j] = max(dp[i-1][j],dp[i][j-1])+cnt[i][j]

    程序说明:(略)


    AC的C++语言程序如下:

    /* POJ1609 UVALive2815 UVA1196 ZOJ1787 Tiling Up Blocks */
    
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    
    using namespace std;
    
    const int N = 100;
    int cnt[N+1][N+1], dp[N+1][N+1];
    
    int main()
    {
        int n, left, mid;
    
        while(scanf("%d", &n) != EOF && n) {
            memset(cnt, 0, sizeof(cnt));
            memset(dp, 0, sizeof(dp));
    
            for(int i=0; i<n; i++) {
                scanf("%d%d", &left, &mid);
                cnt[left][mid]++;
            }
    
            // DP计算过程
            for(int i=1; i<=N; i++)
                for(int j=1; j<=N; j++)
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) +cnt[i][j];
    
            printf("%d
    ", dp[N][N]);
        }
        printf("*
    ");
    
        return 0;
    }




  • 相关阅读:
    后台管理、编辑器上传图片、修改用户头像、bbs小总结
    侧边栏制作成inclusion_tag、文章的点赞点踩、文章的评论
    登陆功能、bbs首页搭建、admin后台管理、首页文章展示、用户头像展示、图片防盗链、个人站点页面搭建、侧边栏展示功能、侧边栏筛选功能、将侧边栏制作成inclusion_tag
    表创建及同步、注册功能、登陆功能、搭建bbs首页
    毕设进度7
    毕设进度6
    毕设进度5
    毕设进度4
    毕设进度3
    学习进度2
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7563652.html
Copyright © 2011-2022 走看看