zoukankan      html  css  js  c++  java
  • Project Euler Problem 23 Non-abundant sums

    Non-abundant sums

    Problem 23

    A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.

    A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.

    As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.

    Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.


    C++:

    #include <iostream>
    #include <vector>
    #include <cstring>
    
    using namespace std;
    
    const int MAXN = 28123;
    
    int sum[MAXN+1];
    int flag[MAXN+1];
    
    void maketable(int n)
    {
        memset(sum, 0, sizeof(sum));
        sum[1] = 0;
    
        int i=2, j;
        while(i<=n) {
            sum[i]++;
            j = i + i;      /* j=ki, k>1 */
            while(j <= n) {
                sum[j] += i;
                j += i;
            }
            i++;
        }
    }
    
    int main()
    {
        vector<int> abundant;
    
        maketable(MAXN);
    
        for(int i=2; i<=MAXN; i++)
            if(sum[i] > i)
                abundant.push_back(i);
    
        memset(flag, 0, sizeof(flag));
        for(int i=0; i<(int)abundant.size(); i++)
            for(int j=0; j<(int)abundant.size(); j++) {
                int temp = abundant[i] + abundant[j];
                if(temp <= MAXN)
                    flag[temp] = 1;
            }
    
        int total = 0;
        for(int i=1; i<=MAXN; i++)
            if(flag[i])
                total += i;
    
        cout << MAXN * (MAXN + 1) / 2 - total << endl;
    
        return 0;
    }



  • 相关阅读:
    剑指offer——斐波那契数列
    剑指offer——用两个栈实现队列
    剑指offer——二维数组中的查找
    LeetCode第九题—— Palindrome Number(判断回文数)
    java 面试题汇总
    idea设置方法注释
    解决java.lang.SecurityException: Invalid signature file digest for Manifest main attributes
    Timer和TimerTask详解
    java8函数式接口(Functional Interface)
    Python执行选择性粘贴
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7563999.html
Copyright © 2011-2022 走看看