zoukankan      html  css  js  c++  java
  • Project Euler Problem 23 Non-abundant sums

    Non-abundant sums

    Problem 23

    A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.

    A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.

    As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.

    Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.


    C++:

    #include <iostream>
    #include <vector>
    #include <cstring>
    
    using namespace std;
    
    const int MAXN = 28123;
    
    int sum[MAXN+1];
    int flag[MAXN+1];
    
    void maketable(int n)
    {
        memset(sum, 0, sizeof(sum));
        sum[1] = 0;
    
        int i=2, j;
        while(i<=n) {
            sum[i]++;
            j = i + i;      /* j=ki, k>1 */
            while(j <= n) {
                sum[j] += i;
                j += i;
            }
            i++;
        }
    }
    
    int main()
    {
        vector<int> abundant;
    
        maketable(MAXN);
    
        for(int i=2; i<=MAXN; i++)
            if(sum[i] > i)
                abundant.push_back(i);
    
        memset(flag, 0, sizeof(flag));
        for(int i=0; i<(int)abundant.size(); i++)
            for(int j=0; j<(int)abundant.size(); j++) {
                int temp = abundant[i] + abundant[j];
                if(temp <= MAXN)
                    flag[temp] = 1;
            }
    
        int total = 0;
        for(int i=1; i<=MAXN; i++)
            if(flag[i])
                total += i;
    
        cout << MAXN * (MAXN + 1) / 2 - total << endl;
    
        return 0;
    }



  • 相关阅读:
    正向代理和反向代理
    轮询和长轮询
    偏函数 方法与函数的区别
    pipreqs 生成项目依赖的第三方包
    git安装与使用
    自动生成接口文档
    上线
    Android APK加固-完善内存dex
    Android APK加固-内存加载dex
    替换ClassLoader
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7563999.html
Copyright © 2011-2022 走看看