zoukankan      html  css  js  c++  java
  • Project Euler Problem 23 Non-abundant sums

    Non-abundant sums

    Problem 23

    A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.

    A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.

    As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.

    Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.


    C++:

    #include <iostream>
    #include <vector>
    #include <cstring>
    
    using namespace std;
    
    const int MAXN = 28123;
    
    int sum[MAXN+1];
    int flag[MAXN+1];
    
    void maketable(int n)
    {
        memset(sum, 0, sizeof(sum));
        sum[1] = 0;
    
        int i=2, j;
        while(i<=n) {
            sum[i]++;
            j = i + i;      /* j=ki, k>1 */
            while(j <= n) {
                sum[j] += i;
                j += i;
            }
            i++;
        }
    }
    
    int main()
    {
        vector<int> abundant;
    
        maketable(MAXN);
    
        for(int i=2; i<=MAXN; i++)
            if(sum[i] > i)
                abundant.push_back(i);
    
        memset(flag, 0, sizeof(flag));
        for(int i=0; i<(int)abundant.size(); i++)
            for(int j=0; j<(int)abundant.size(); j++) {
                int temp = abundant[i] + abundant[j];
                if(temp <= MAXN)
                    flag[temp] = 1;
            }
    
        int total = 0;
        for(int i=1; i<=MAXN; i++)
            if(flag[i])
                total += i;
    
        cout << MAXN * (MAXN + 1) / 2 - total << endl;
    
        return 0;
    }



  • 相关阅读:
    第五周课后作业
    第五周读书笔记
    PB16120853+JL17110067
    第一次个人作业报告
    《编程匠艺》读书笔记----第四周
    软工第一次个人作业博客(一)
    软工第一次个人作业博客(二)
    《程序员修炼之道》读书笔记(二)--第三周
    关于在aspx前台使用后台变量的问题
    sql语句优化SQL Server
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7563999.html
Copyright © 2011-2022 走看看