Problem 18
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However,Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
C++:
#include <iostream> #include <cstring> #include <cstdlib> using namespace std; const int MAXN = 15; int grid[MAXN][MAXN]; int max; inline int mymax(int left, int right) { return left > right ? left : right; } int setmax(int n) { for(int i=1; i<n; i++) for(int j=0; j<=i; j++) if(j == 0) grid[i][j] += grid[i-1][j]; else grid[i][j] = mymax(grid[i][j] + grid[i-1][j-1], grid[i][j] + grid[i-1][j]); int max = 0; for(int i=n-1, j=0; j<n; j++) if(grid[i][j] > max) max = grid[i][j]; return max; } int main() { int n; while(cin >> n && n<=MAXN) { memset(grid, 0, sizeof(grid)); for(int i=0; i<n; i++) { for(int j=0; j<=i; j++) cin >> grid[i][j]; } int max = setmax(n); cout << max << endl; } return 0; }
参考链接:Project Euler Problem 67 Maximum path sum II