zoukankan      html  css  js  c++  java
  • 7款优秀的开源数据挖掘工具

    7款优秀的开源数据挖掘工具

     

    IDMer说道:本文只对几种流行的开源数据挖掘平台进行了检视,比如Weka和R等。如果您想找寻更多的开源数据挖掘软件,可以到KDnuggets和Open Directory上查看。为了评测这些软件,我们用了UCI Machine Learning Repository上的心脏病诊断数据集。

    Tanagra

    Tanagra (http://eric.univ-lyon2.fr/wricco/tanagra/) 是使用图形界面的数据挖掘软件,采用了类似Windows资源管理器中的树状结构来组织分析组件。Tanagra缺乏高级的可视化能力,但它的强项是统计 分析,提供了众多的有参和无参检验方法。同时它的特征选取方法也很多。

    R

    R (http://www.r-project.org) 是用于统计分析和图形化的计算机语言及分析工具,为了保证性能, 其核心计算模块是用C、C++和Fortran编写的。同时为了便于使用,它提供了一种脚本语言,即R语言。R语言和贝尔实验室开发的S语言类似。R支持 一系列分析技术,包括统计检验、预测建模、数据可视化等等。在CRAN(http://cran.r-project.org) 上可以找到众多开源的扩展包。

    R软件的首选界面是命令行界面,通过编写脚本来调用分析功能。如果缺乏编程技能,也可使用图形界面,比如使用R Commander(http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/)或Rattle(http://rattle.togaware.com)。

    YALE (IDMer:现在已经更名为RapidMiner)

    YALE (Yet Another Learning Environment, http://rapid-i.com) 提供了图形化界面,采用了类似Windows资源管理器中的树状结构来组织分析组件,树上每个节点表示不同的运算符(operator)。YALE中提供 了大量的运算符,包括数据处理、变换、探索、建模、评估等各个环节。YALE是用Java开发的,基于Weka来构建,也就是说它可以调用Weka中的各 种分析组件。

    KNIME

    KNIME (Konstanz InformationMiner, http://www.knime.org)是基于Eclipse开发环境来精心开发的数据挖掘工具。无需安装,方便使用(IDMer:呵呵,大家喜欢的绿色版)。和YALE一样,KNIME也是用Java开发的,可以扩展使用Weka中的挖掘算法。和YALE不同点的是,KNIME采用的是类似数据流(data flow)的方式来建立分析挖掘流程(IDMer:这个我喜欢,和SAS EM或SPSS Clementine等商用数据挖掘软件的操作方式类似)。挖掘流程由一系列功能节点 (node)组成,每个节点有输入/输出端口(port),用于接收数据或模型、导出结果。(IDMer:感觉KNIME比Weka的KnowledgeFlow更好用,连接节点时很方便,直接用鼠标拖拽连接端口即可。而Weka中则需要在节点上按鼠标右键,再选择后续节点,比较麻烦,刚开始使用时找了半天才知道怎么连)

    KNIME中每个节点都带有交通信号灯,用于指示该节点的状态(未连接、未配置、缺乏输入数据时为红灯;准备执行为黄灯;执行完毕后为绿灯)。在KNIME中有个特色功能——HiLite,允许用户在节点结果中标记感兴趣的记录,并进一步展开后续探索。

    Weka

    Weka (Waikato Environment for Knowledge Analysis, http://www.cs.waikato.ac.nz/ml/weka/) 可能是名气最大的开源机器学习和数据挖掘软件。高级用户可以通过Java编程和命令行来调用其分析组件。同时,Weka也为普通用户提供了图形化界面,称 为Weka KnowledgeFlow Environment和Weka Explorer。和R相比,Weka在统计分析方面较弱,但在机器学习方面要强得多。在Weka论坛 (http://weka.sourceforge.net/wiki/index.php/Related_Projects) 可以找到很多扩展包,比如文本挖掘、可视化、网格计算等等。很多其它开源数据挖掘软件也支持调用Weka的分析功能。

    GGobi

    数据可视化是数据挖掘的重要组成部分, GGobi (http://www.ggobi.org)就是用于交互式可视化的开源软件,它使用brushing的方法。GGobi可以用作R软件的插件,或者通过Perl、Python等脚本语言来调用。

    Orange

    Orange (http://www.ailab.si/orange)是类似KNIME和Weka KnowledgeFlow的数据挖掘工具,它的图形环境称为Orange画布(OrangeCanvas),用户可以在画布上放置分析控件 (widget),然后把控件连接起来即可组成挖掘流程。这里的控件和KNIME中的节点是类似的概念。每个控件执行特定的功能,但与KNIME中的节点 不同,KNIME节点的输入输出分为两种类型(模型和数据),而Orange的控件间可以传递多种不同的信号,比如learners, classifiers, evaluation results, distance matrices, dendrograms等等。Orange的控件不象KNIME的节点分得那么细,也就是说要完成同样的分析挖掘任务,在Orange里使用的控件数量可 以比KNIME中的节点数少一些。Orange的好处是使用更简单一些,但缺点是控制能力要比KNIME弱。

    除了界面友好易于使用的优点,Orange的强项在于提供了大量可视化方法,可以对数据和模型进行多种图形化展示,并能智能搜索合适的可视化形式,支持对数据的交互式探索。

    Orange的弱项在于传统统计分析能力不强,不支持统计检验,报表能力也有限。Orange的底层核心也是采用C++编写,同时允许用户使用Python脚本语言来进行扩展开发(参见http://www.scipy.org)。

    结论

    —-

    以 上介绍的几款软件都是优秀的开源数据挖掘软件,各有所长,同时也各有缺点。读者可以结合自己的需求来进行选择,或者组合使用多个软件。对于普通用户可以选 用界面友好易于使用的软件,对于希望从事算法开发的用户则可以根据软件开发工具不同(Java、R、C++、Python等)来选择相应的软件。以上这几 款软件(除了GGobi)基本上都提供了我们期望的大部分功能。

    (IDMer:我尝试了以上这几种 开源软件,Weka很有名但用起来并不方便,界面也简单了点;RapidMiner现在流行的势头在上升,但它的操作方式和商用软件差别较大,不支持分析 流程图的方式,当包含的运算符比较多的时候就不容易查看了;KNIME和Orange看起来都不错,Orange界面看上去很清爽,但我发现它不支持中 文。我的推荐是KNIME,同时安装Weka和R扩展包。)

  • 相关阅读:
    xls与csv文件的区别
    青音,经典爱情语录
    win7用户账户自动登录方法汇总
    How to using Procedure found Lead Blocker
    FTS(3) BSD 库函数手册 遍历文件夹(二)
    FTS(3) BSD 库函数手册 遍历文件夹(一)
    DisplayMetrics类 获取手机显示屏的基本信息 包括尺寸、密度、字体缩放等信息
    About App Distribution 关于应用发布
    FTS(3) 遍历文件夹实例
    OpenCV 2.1.0 with Visual Studio 2008
  • 原文地址:https://www.cnblogs.com/timssd/p/6107167.html
Copyright © 2011-2022 走看看