zoukankan      html  css  js  c++  java
  • 图像处理之图像拼接三

     图像处理之图像拼接三

    基于最佳缝合线的拼接:

    一个图像如何求取最佳缝合线呢。

        //查找接缝
        Ptr<SeamFinder> seam_finder;
        seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
        seam_finder->find(images_warped_f, corners, masks_warped);

    这个是opencv的代码 可以看出需要知道conners。目前怎么求conners还没搞清楚

    以上是两个图像以及它们分别的最佳缝合线,其实是一个,因为这个两个图像没有拼接。OK

    手动把这两个拼接在一起,也就是拼接后的模板。同时把左图和右图也贴上,三个图像大小一致,且都是拼接后的图像

    上拉普拉斯融合代码

    复制代码
    // SurfTest.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    #include <opencv2/opencv.hpp>
    #include <string.h>
    #include <atlstr.h>
    #include <assert.h>
    #include <math.h>
    #include <float.h>
    #include <limits.h>
    #include <time.h>
    #include <ctype.h>
    #include <stdlib.h>
    #include <stdio.h>
    #include <vector>
    #include <cstring>
    //#include <opencv2/stitching.hpp>
    #include <iostream>
    #include <fstream>
    
    using namespace cv;
    using namespace std;
    
    
    
    
    //int _tmain(int argc, _TCHAR* argv[])
    //{
    //   
    //    CString imgpath="E:\项目文件\周信达\显微镜样品测试\显微镜样品测试\介质末\";
    //    CString imgname="ml.jpg";
    //    CString filepath;
    //    filepath=imgpath+imgname;
    //    IplImage *testimg=cvLoadImage(filepath,-1);
    //    CString savepath="E:\项目文件\周信达\显微镜样品测试\显微镜样品测试\介质末\6\";
    //    for (int i=0;i<8;i++)
    //    {
    //        for (int j=0;j<7;j++)
    //        {
    //            CString saveimgpath;
    //            CString saveimgname;
    //            saveimgname.Format("0-%d-%d.jpg",i,j);
    //            saveimgpath=savepath+saveimgname;
    //            cvSaveImage(saveimgpath,testimg);
    //        }
    //    }
    //    cvReleaseImage(&testimg);
    //    printf("success");
    //    system("pause");
    //}
    
    /************************************************************************/
    /* 说明:
    *金字塔从下到上依次为 [0,1,...,level-1] 层
    *blendMask 为图像的掩模
    *maskGaussianPyramid为金字塔每一层的掩模
    *resultLapPyr 存放每层金字塔中直接用左右两图Laplacian变换拼成的图像
    */
    /************************************************************************/
    
    
    class LaplacianBlending {
    private:
        Mat_<Vec3f> left;
        Mat_<Vec3f> right;
        Mat_<float> blendMask;
    
        vector<Mat_<Vec3f> > leftLapPyr,rightLapPyr,resultLapPyr;//Laplacian Pyramids
        Mat leftHighestLevel, rightHighestLevel, resultHighestLevel;
        vector<Mat_<Vec3f> > maskGaussianPyramid; //masks are 3-channels for easier multiplication with RGB
    
        int levels;
    
        void buildPyramids() 
        {
            buildLaplacianPyramid(left,leftLapPyr,leftHighestLevel);
            buildLaplacianPyramid(right,rightLapPyr,rightHighestLevel);
            buildGaussianPyramid();
        }
    
        void buildGaussianPyramid() 
        {//金字塔内容为每一层的掩模
            assert(leftLapPyr.size()>0);
    
            maskGaussianPyramid.clear();
            Mat currentImg;
            cvtColor(blendMask, currentImg, CV_GRAY2BGR);//store color img of blend mask into maskGaussianPyramid
            maskGaussianPyramid.push_back(currentImg); //0-level
    
            currentImg = blendMask;
            for (int l=1; l<levels+1; l++) {
                Mat _down;
                if (leftLapPyr.size() > l)
                    pyrDown(currentImg, _down, leftLapPyr[l].size());
                else
                    pyrDown(currentImg, _down, leftHighestLevel.size()); //lowest level
    
                Mat down;
                cvtColor(_down, down, CV_GRAY2BGR);
                maskGaussianPyramid.push_back(down);//add color blend mask into mask Pyramid
                currentImg = _down;
            }
        }
    
        void buildLaplacianPyramid(const Mat& img, vector<Mat_<Vec3f> >& lapPyr, Mat& HighestLevel)
        {
            lapPyr.clear();
            Mat currentImg = img;
            for (int l=0; l<levels; l++) 
            {
                Mat down,up;
                pyrDown(currentImg, down);
                pyrUp(down, up,currentImg.size());
                Mat lap = currentImg - up;
                lapPyr.push_back(lap);
                currentImg = down;
            }
            currentImg.copyTo(HighestLevel);
        }
    
        Mat_<Vec3f> reconstructImgFromLapPyramid() 
        {
            //将左右laplacian图像拼成的resultLapPyr金字塔中每一层
            //从上到下插值放大并相加,即得blend图像结果
            Mat currentImg = resultHighestLevel;
            for (int l=levels-1; l>=0; l--) 
            {
                Mat up;
    
                pyrUp(currentImg, up, resultLapPyr[l].size());
                currentImg = up + resultLapPyr[l];
            }
            return currentImg;
        }
    
        void blendLapPyrs() 
        {
            //获得每层金字塔中直接用左右两图Laplacian变换拼成的图像resultLapPyr
            resultHighestLevel = leftHighestLevel.mul(maskGaussianPyramid.back()) +
                rightHighestLevel.mul(Scalar(1.0,1.0,1.0) - maskGaussianPyramid.back());
            for (int l=0; l<levels; l++) 
            {
                Mat A = leftLapPyr[l].mul(maskGaussianPyramid[l]);
                Mat antiMask = Scalar(1.0,1.0,1.0) - maskGaussianPyramid[l];
                Mat B = rightLapPyr[l].mul(antiMask);
                Mat_<Vec3f> blendedLevel = A + B;
    
                resultLapPyr.push_back(blendedLevel);
            }
        }
    
    public:
        LaplacianBlending(const Mat_<Vec3f>& _left, const Mat_<Vec3f>& _right, const Mat_<float>& _blendMask, int _levels)://construct function, used in LaplacianBlending lb(l,r,m,4);
          left(_left),right(_right),blendMask(_blendMask),levels(_levels)
          {
              assert(_left.size() == _right.size());
              assert(_left.size() == _blendMask.size());
              buildPyramids();    //construct Laplacian Pyramid and Gaussian Pyramid
              blendLapPyrs();    //blend left & right Pyramids into one Pyramid
          };
    
          Mat_<Vec3f> blend() {
              return reconstructImgFromLapPyramid();//reconstruct Image from Laplacian Pyramid
          }
    };
    
    Mat_<Vec3f> LaplacianBlend(const Mat_<Vec3f>& l, const Mat_<Vec3f>& r, const Mat_<float>& m) {
        LaplacianBlending lb(l,r,m,4);
        return lb.blend();
    }
    
    int main() 
    {
    
    
        Mat l8u = imread("11.jpg");//左图
        Mat r8u = imread("22.jpg");//右图
    
        namedWindow("left",0);
        imshow("left",l8u); 
    
        namedWindow("right",0);
        imshow("right",r8u);
    
        Mat_<Vec3f> l; l8u.convertTo(l,CV_32F,1.0/255.0);//Vec3f表示有三个通道,即 l[row][column][depth]
        Mat_<Vec3f> r; r8u.convertTo(r,CV_32F,1.0/255.0);
    
    
        ////create blend mask matrix m
        //Mat_<float> m(l.rows,l.cols,0.0);                    //将m全部赋值为0
        //m(Range::all(),Range(0,m.cols/2)) = 1.0;    //取m全部行&[0,m.cols/2]列,赋值为1.0
    
    
        Mat_<float> m(l.rows,l.cols,0.0);
        Mat C=imread("newmark.jpg"); //模板
        for(int i=0;i<l.rows;i++)
        {
            for(int j=0;j<l.cols;j++)
            {
                if(C.at<Vec3b>(i,j)[0]!=0&&C.at<Vec3b>(i,j)[1]!=0&&C.at<Vec3b>(i,j)[2]!=0)  // 因为我要的只是位置
                    m(i,j)=1.0;
            }
        }
    
    
        Mat_<Vec3f> blend = LaplacianBlend(l, r, m);
    
        Mat re;  
        blend.convertTo(re,CV_8UC3,255);  
        imwrite("blended.jpg",re); 
    
        namedWindow("blended",0);
        imshow("blended",blend);
    
        waitKey(0);
    }
    复制代码

    融合后的结果如下:

    可以看到图像中间有一段拼接的非常好,其他地方是因为最佳缝合线是我手动生成的,存在误差。也就是说这个方法能走通,首先求解最佳缝合线,然后

    上拉普拉斯融合即可。

  • 相关阅读:
    Light OJ 1067 Combinations (乘法逆元)
    hdu1172猜数字(暴力枚举)
    hdu 2266 How Many Equations Can You Find(DFS)
    项目之问卷调查问题
    Django之Modelform组件
    GIT
    form组件的总结
    总结django知识点
    djang-分页
    Django-Ajax
  • 原文地址:https://www.cnblogs.com/timssd/p/6725888.html
Copyright © 2011-2022 走看看