zoukankan      html  css  js  c++  java
  • hdu 6354

    Problem Description
    Edward is a worker for Aluminum Cyclic Machinery. His work is operating mechanical arms to cut out designed models. Here is a brief introduction of his work.
    Assume the operating plane as a two-dimensional coordinate system. At first, there is a disc with center coordinates (0,0) and radius R. Then, m mechanical arms will cut and erase everything within its area of influence simultaneously, the i-th area of which is a circle with center coordinates (xi,yi) and radius ri (i=1,2,,m). In order to obtain considerable models, it is guaranteed that every two cutting areas have no intersection and no cutting area contains the whole disc.
    Your task is to determine the perimeter of the remaining area of the disc excluding internal perimeter.
    Here is an illustration of the sample, in which the red curve is counted but the green curve is not.
     
    Input
    The first line contains one integer T, indicating the number of test cases.
    The following lines describe all the test cases. For each test case:
    The first line contains two integers m and R.
    The i-th line of the following m lines contains three integers xi,yi and ri, indicating a cutting area.
    1T10001m1001000xi,yi10001R,ri1000 (i=1,2,,m).
     
    Output
    For each test case, print the perimeter of the remaining area in one line. Your answer is considered correct if its absolute or relative error does not exceed 106.
    Formally, let your answer be a and the jury's answer be b. Your answer is considered correct if |ab|max(1,|b|)106.
     
    Sample Input
    1 4 10 6 3 5 10 -4 3 -2 -4 4 0 9 1
     
    Sample Output
    81.62198908430238475376
     
    Source
     
    Recommend
    chendu   |   We have carefully selected several similar problems for you:  6361 6360 6359 6358 6357 
     
     
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 #define N 120
     4 #define pi acos(-1.0)
     5 struct point{
     6     double  x,y;
     7 };
     8 struct circle{
     9     point po;
    10     double  r;
    11 }cir[N];
    12 double dist (point a,point b){
    13     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    14 }
    15 int t,m;
    16 double R;
    17 int main()
    18 {
    19     scanf("%d",&t);
    20     while(t--)
    21     {
    22         scanf("%d%lf",&m,&R);
    23         circle a;
    24         a.po.x=0;a.po.y=0;
    25         a.r=R;    
    26         for(int i=0;i<m;i++)
    27         {
    28             scanf("%lf%lf%lf",&cir[i].po.x,&cir[i].po.y,&cir[i].r);
    29         }
    30         double ans=2*pi*R;
    31         for(int i=0;i<m;i++)
    32         {
    33             double dis=dist(a.po,cir[i].po);
    34             if(dis-cir[i].r<a.r&&dis+cir[i].r>=a.r){
    35                 double d1=2*acos((dis*dis+a.r*a.r-cir[i].r*cir[i].r)/(2*dis*a.r));
    36                 double d2=2*acos((dis*dis+cir[i].r*cir[i].r-a.r*a.r)/(2*dis*cir[i].r));
    37                 double l1=d1*a.r;
    38                 double l2=d2*cir[i].r;
    39                 ans-=l1;
    40                 ans+=l2;
    41             }
    42         }
    43         printf("%.10f
    ",ans);
    44     }
    45     
    46     return 0;
    47 }
    48 /*
    49 //判段两个圆的位置关系:
    50 相离  :  dis(a,b)>a.r+b.r
    51 外切  :  dis(a.b)==a.r+b.r
    52 相交  :  dis(a,b)-min(a.r,b.r)<max(a.r,b.r)&&dis(a,b)+min(a.r,b.r)>max(a.r,b.r)
    53 内切  :  dis(a,b)+min(a.r,b.r)==max(a.r,b.r)
    54 内含  :  dis(a,b)+min(a,r)<max(a.r,b.r)
    55 */
     
  • 相关阅读:
    Django Swagger接口文档生成
    基于docker快速搭建hbase集群
    Cassandra数据操作管理工具tableplus
    基于docker创建Cassandra集群
    基于docker快速搭建hive环境
    [20200623]应用报错:当前事务无法提交,而且无法支持写入日志文件的操作
    zabbix--监控 TCP 连接状态
    kubernetes 使用ceph实现动态持久卷存储
    MySQL备份脚本
    Linux Pam后门总结拓展
  • 原文地址:https://www.cnblogs.com/tingtin/p/9439576.html
Copyright © 2011-2022 走看看