zoukankan      html  css  js  c++  java
  • hdu 6354

    Problem Description
    Edward is a worker for Aluminum Cyclic Machinery. His work is operating mechanical arms to cut out designed models. Here is a brief introduction of his work.
    Assume the operating plane as a two-dimensional coordinate system. At first, there is a disc with center coordinates (0,0) and radius R. Then, m mechanical arms will cut and erase everything within its area of influence simultaneously, the i-th area of which is a circle with center coordinates (xi,yi) and radius ri (i=1,2,,m). In order to obtain considerable models, it is guaranteed that every two cutting areas have no intersection and no cutting area contains the whole disc.
    Your task is to determine the perimeter of the remaining area of the disc excluding internal perimeter.
    Here is an illustration of the sample, in which the red curve is counted but the green curve is not.
     
    Input
    The first line contains one integer T, indicating the number of test cases.
    The following lines describe all the test cases. For each test case:
    The first line contains two integers m and R.
    The i-th line of the following m lines contains three integers xi,yi and ri, indicating a cutting area.
    1T10001m1001000xi,yi10001R,ri1000 (i=1,2,,m).
     
    Output
    For each test case, print the perimeter of the remaining area in one line. Your answer is considered correct if its absolute or relative error does not exceed 106.
    Formally, let your answer be a and the jury's answer be b. Your answer is considered correct if |ab|max(1,|b|)106.
     
    Sample Input
    1 4 10 6 3 5 10 -4 3 -2 -4 4 0 9 1
     
    Sample Output
    81.62198908430238475376
     
    Source
     
    Recommend
    chendu   |   We have carefully selected several similar problems for you:  6361 6360 6359 6358 6357 
     
     
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 #define N 120
     4 #define pi acos(-1.0)
     5 struct point{
     6     double  x,y;
     7 };
     8 struct circle{
     9     point po;
    10     double  r;
    11 }cir[N];
    12 double dist (point a,point b){
    13     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    14 }
    15 int t,m;
    16 double R;
    17 int main()
    18 {
    19     scanf("%d",&t);
    20     while(t--)
    21     {
    22         scanf("%d%lf",&m,&R);
    23         circle a;
    24         a.po.x=0;a.po.y=0;
    25         a.r=R;    
    26         for(int i=0;i<m;i++)
    27         {
    28             scanf("%lf%lf%lf",&cir[i].po.x,&cir[i].po.y,&cir[i].r);
    29         }
    30         double ans=2*pi*R;
    31         for(int i=0;i<m;i++)
    32         {
    33             double dis=dist(a.po,cir[i].po);
    34             if(dis-cir[i].r<a.r&&dis+cir[i].r>=a.r){
    35                 double d1=2*acos((dis*dis+a.r*a.r-cir[i].r*cir[i].r)/(2*dis*a.r));
    36                 double d2=2*acos((dis*dis+cir[i].r*cir[i].r-a.r*a.r)/(2*dis*cir[i].r));
    37                 double l1=d1*a.r;
    38                 double l2=d2*cir[i].r;
    39                 ans-=l1;
    40                 ans+=l2;
    41             }
    42         }
    43         printf("%.10f
    ",ans);
    44     }
    45     
    46     return 0;
    47 }
    48 /*
    49 //判段两个圆的位置关系:
    50 相离  :  dis(a,b)>a.r+b.r
    51 外切  :  dis(a.b)==a.r+b.r
    52 相交  :  dis(a,b)-min(a.r,b.r)<max(a.r,b.r)&&dis(a,b)+min(a.r,b.r)>max(a.r,b.r)
    53 内切  :  dis(a,b)+min(a.r,b.r)==max(a.r,b.r)
    54 内含  :  dis(a,b)+min(a,r)<max(a.r,b.r)
    55 */
     
  • 相关阅读:
    懒人模式Singleton模式Meyers版本号
    欢迎CSDN-markdown编辑
    协同编辑多人word一个小技巧文件
    72_leetcode_Construct Binary Tree from Preorder and Inorder Traversal
    2015第44周五Java集群技术(转)
    linux远程管理工具
    2015第44周三提升个人价值意识
    2015第44周二
    2015第44周一
    2015第43周日
  • 原文地址:https://www.cnblogs.com/tingtin/p/9439576.html
Copyright © 2011-2022 走看看