zoukankan      html  css  js  c++  java
  • python学习第四天笔记整理

    一、迭代器及生成器

    #迭代器:迭代的工具

    #1 什么是迭代:指的是一个重复的过程,每一次重复称为一次迭代,并且每一次重复的结果是下一次重复的初始值
    # while True:
    # print('=====>')

    # l=['a','b','c']
    # count=0
    # while count < len(l):
    # print(l[count])
    # count+=1

    #2 为什么要有迭代器?
    #
    对于序列类型:str,list,tuple,可以依赖索引来迭代取值,
    # 但是对于dict,set,文件,python必须为我们提供一种不依赖于索引的迭代取值的方式-》迭代器



    #3 可迭代的对象(下列都是):obj.__iter__
    # name='egon'
    # l=[1,2,3]
    # t=(1,2,3)
    # d={'name':'egon','age':18,'sex':'male'}
    # s={'a','b','c'}
    # f=open('a.txt','w',encoding='utf-8')
    #
    # name.__iter__
    # l.__iter__
    # t.__iter__
    # d.__iter__
    # s.__iter__
    # f.__iter__

    #4 迭代器对象(文件是):obj.__iter__,obj.__next__
    # f.__iter__
    # f.__next__


    #总结:
    #1 可迭代对象不一定是迭代器对象
    #2 迭代器对象一定是可迭代的对象
    #3 调用obj.__iter__()方法,得到的是迭代器对象(对于迭代器对象,执行__iter__得到的仍然是它本身)



    # d={'name':'egon','age':18,'sex':'male'}
    # d_iter=d.__iter__()

    # f=open('a.txt','w',encoding='utf-8')
    # f_iter=f.__iter__().__iter__().__iter__().__iter__()
    #
    # print(f_iter is f)


    # d={'name':'egon','age':18,'sex':'male'}
    # d_iter=d.__iter__()
    #
    # print(d_iter.__next__())
    # print(d_iter.__next__())
    # print(d_iter.__next__())
    # print(d_iter.__next__()) #迭代器d_iter没有值了,就会抛出异常StopIteration



    # f=open('a.txt','r',encoding='utf-8')
    # print(f.__next__())
    # print(f.__next__())
    # print(f.__next__())
    # print(f.__next__())
    # f.close()


    # l=['a','b','c']
    # l_iter=l.__iter__()
    #
    # print(l_iter.__next__())
    # print(l_iter.__next__())
    # print(l_iter.__next__())
    # print(l_iter.__next__())



    # d={'name':'egon','age':18,'sex':'male'}
    # d_iter=iter(d) #d_iter=d.__iter__()
    #
    # #len(obj) 等同于obj.__len__()
    #
    # while True:
    # try:
    # print(next(d_iter)) #print(d_iter.__next__())
    # except StopIteration:
    # break
    #
    # print('=>>>')
    # print('=>>>')
    # print('=>>>')
    # print('=>>>')


    #for循环详解:
    #1、调用in后的obj_iter=obj.__iter__()
    #2、k=obj_iter.__next__()
    #3、捕捉StopIteration异常,结束迭代
    # d={'name':'egon','age':18,'sex':'male'}
    # for k in d:
    # print(k)


    #总结迭代器的优缺点:
    #优点:
    #1、提供一种统一的、不依赖于索引的取值方式,为for循环的实现提供了依据
    #2、迭代器同一时间在内存中只有一个值——》更节省内存,

    #缺点:
    #1、只能往后取,并且是一次性的
    #2、不能统计值的个数,即长度


    # l=[1,2,3,4,5,6]
    # l[0]
    # l[1]
    # l[2]
    # l[0]

    # l_iter=l.__iter__()
    # # print(l_iter)
    # print(next(l_iter))
    # print(next(l_iter))
    # print(next(l_iter))
    # print(next(l_iter))
    # print(next(l_iter))
    # print(next(l_iter))
    # print(next(l_iter))
    #
    # l_iter=l.__iter__()
    # print(next(l_iter))
    # print(next(l_iter))
    # print(next(l_iter))

    # print(len(l_iter))

    生成器

    #1 什么是生成器:只要在函数体内出现yield关键字,那么再执行函数就不会执行函数代码,会得到一个结果,该结果就是生成器
    def func():
    print(
    '=====>1')
    yield
    1
    print('=====>2')
    yield
    2
    print('=====>3')
    yield
    3

    #生成器就是迭代器
    # g=func()
    #
    # res1=next(g)
    # print(res1)
    #
    #
    # res2=next(g)
    # print(res2)
    #
    #
    # res3=next(g)
    # print(res3)


    #yield的功能:
    #1、yield为我们提供了一种自定义迭代器对象的方法
    #2、yield与return的区别1:yield可以返回多次值 #2:函数暂停与再继续的状态是由yield帮我们保存的


    # obj=range(1,1000000000000000000000000000000000000000000000000000000000000000,2)
    # obj_iter=obj.__iter__()
    # print(next(obj_iter))
    # print(next(obj_iter))
    # print(next(obj_iter))
    # print(next(obj_iter))
    # print(next(obj_iter))


    # def my_range(start,stop,step=1):
    # while start < stop:
    # yield start #start=1
    # start+=step #start=3
    #
    #
    # g=my_range(1,5,2)
    # print(g)

    # print(next(g))
    # print(next(g))
    # print(next(g))
    # print(next(g))
    # print(next(g))
    # print(next(g))
    # print(next(g))
    # for i in my_range(1,5,2):
    # print(i)


    #小练习::tail -f access.log | grep '404'
    # import time
    # def tail(filepath):
    # with open(filepath,'rb') as f:
    # f.seek(0,2)
    # while True:
    # line=f.readline()
    # if line:
    # yield line
    # else:
    # time.sleep(0.05)
    #
    # def grep(lines,pattern):
    # for line in lines:
    # line=line.decode('utf-8')
    # if pattern in line:
    # yield line
    #
    #
    # lines=grep(tail('access.log'),'404')
    #
    # for line in lines:
    # print(line)




    #了解知识点:yield表达式形式的用法
    def eater(name):
    print(
    '%s ready to eat' %name)
    food_list=[]
    while True
    :
    food=
    yield food_list#food=yield='一盆骨头'
    food_list.append(food)
    print(
    '%s start to eat %s' %(name,food))


    e=eater(
    'alex')

    #首先初始化:
    print(e.send(None)) # next(e)
    #然后e.send:1 从暂停的位置将值传给yield 2、与next一样
    print(e.send('一桶泔水'))
    print(e.send(
    '一盆骨头'))

    二、面向过程编程

    #grep -rl 'python' /etc
    #补充:os.walk
    # import os
    # g=os.walk(r'D:videopython20期day4a')
    # # print(next(g))
    # # print(next(g))
    # # print(next(g))
    # # print(next(g))
    # for pardir,_,files in g:
    # for file in files:
    # abs_path=r'%s\%s' %(pardir,file)
    # print(abs_path)




    #分析一:


    # #第一步:拿到一个文件夹下所有的文件的绝对路径
    # import os
    #
    # def search(target): #r'D:videopython20期day4a'
    # while True:
    # filepath=yield #fllepath=yield=r'D:videopython20期day4a'
    # g=os.walk(filepath)
    # for pardir, _, files in g:
    # for file in files:
    # abs_path = r'%s\%s' % (pardir, file)
    # # print(abs_path)
    # target.send(abs_path)
    #
    # # search(r'D:videopython20期day4a')
    # # search(r'D:videopython20期day4')
    #
    #
    # #第二步:打开文件拿到文件对象f
    # def opener():
    # while True:
    # abs_path=yield
    # print('opener func--->',abs_path)
    #
    #
    # target=opener()
    # next(target) #target.send('xxxx')
    #
    # g=search(target)
    # next(g)
    # g.send(r'D:videopython20期day4a')




    #分析二:
    # 第一步:拿到一个文件夹下所有的文件的绝对路径
    import os
    def init(func):
    def inner(*args,**kwargs):
    g=func(*args,**kwargs)
    next(g)
    return g
    return inner

    @
    init
    def search(target): # r'D:videopython20期day4a'
    while True:
    filepath =
    yield
    g = os.walk(filepath)
    for pardir, _, files in g:
    for file in files:
    abs_path =
    r'%s\%s' % (pardir, file)
    #把abs_path传给下一个阶段
    target.send(abs_path)

    # 第二步:打开文件拿到文件对象f
    @init
    def opener(target):
    while True:
    abs_path =
    yield
    with
    open(abs_path,'rb') as f:
    #把(abs_path,f)传给下一个阶段
    target.send((abs_path,f))

    #第三步:读取f的每一行内容
    @init
    def cat(target):
    while True:
    abs_path,f=
    yield
    for
    line in f:
    #把(abs_path,line)传给下一个阶段
    res=target.send((abs_path,line))
    #满足某种条件,break掉for循环
    if res:
    break

    #第四步:判断'python' in line
    @init
    def grep(target,pattern):
    pattern = pattern.encode(
    'utf-8')
    res=False
    while True
    :
    abs_path,line=
    yield res
    res=
    False
    if
    pattern in line:
    #把abs_path传给下一个阶段
    res=True
    target.send(abs_path)

    #第五步:打印文件路径
    @init
    def printer():
    while True:
    abs_path=
    yield
    print('<%s>' %abs_path)

    g=search(opener(cat(grep(printer(),
    'python')))) #'python' in b'xxxxx'
    g.send(r'D:videopython20期day4a')



    #面向过程编程:核心是过程二字,过程指的就是解决问题的步骤,即先干什么后干什么。。。。
    #基于该思路编写程序就好比设计一条流水线,是一种机械式的思维方式

    #优点:复杂的问题流程化、进而简单化
    #缺点:可扩展性差
    三、三元表达式

    1、def my_max(x,y):
    if x >= y:
    return x
    else:
    return y

    x=10
    y=20

    # res=x if x >= y else y
    # print(res)

    name=input('>>: ').strip()

    res=
    'Sb' if name == 'alex' else 'NB'
    print(res)

    2、列表推导式与生成器表达式

    def my_max(x,y):
    if x >= y:
    return x
    else:
    return y

    x=10
    y=20

    # res=x if x >= y else y
    # print(res)

    name=input('>>: ').strip()

    res=
    'Sb' if name == 'alex' else 'NB'
    print(res)

    四、递归调用

    #递归调用:在调用一个函数的过程中,直接或者间接又调用该函数本身,称之为递归调用
    #递归必备的两个阶段:1、递推 2、回溯


    # import sys
    # print(sys.getrecursionlimit())
    # sys.setrecursionlimit(2000)
    # print(sys.getrecursionlimit())

    # def func(n):
    # print('---->',n)
    # func(n+1)
    #
    # func(0)


    # def bar():
    # print('from bar')
    # func()
    #
    # def func():
    # print('from func')
    # bar()
    #
    # func()


    # age(5) = age(4) + 2
    # age(4) = age(3) + 2
    # age(3) = age(2) + 2
    # age(2) = age(1) + 2
    #
    # age(1) = 18

    # age(n)=age(n-1)+2 # n > 1
    # age(1) = 18 #n = 1


    # def age(n):
    # if n == 1:
    # return 18
    # return age(n-1) + 2
    #
    # res=age(5)
    # print(res)


    # l=[1,[2,[3,[4,[5,[6,[7,]]]]]]]
    #
    #
    # def func(l):
    # for item in l:
    # if type(item) is list:
    # func(item)
    # else:
    # print(item)



    # def func():
    # print('===>')
    # func()
    #
    # func()
    五、二分法

    #了解的知识点
    l=[1,2,10,30,33,99,101,200,301,402] #从小到大排列的数字列表

    def binary_search(l,num):
    print(l)
    if len(l) == 0:
    print(
    'not exists')
    return
    mid_index=len(l) // 2
    if num > l[mid_index]:
    #往右找
    binary_search(l[mid_index+1:],num)

    elif num < l[mid_index]:
    #往左找
    binary_search(l[0:mid_index],num)
    else:
    print(
    'find it')

    # binary_search(l,301)
    binary_search(l,302)

    六、匿名函数

    # def func(): #func=内存地址
    # print('from func')
    #
    # func()
    # func()


    # 内存地址
    # def my_sum(x,y):
    # return x+y

    # print(lambda x,y:x+y)
    # print((lambda x,y:x+y)(1,2))

    # func=lambda x,y:x+y
    # # print(func)
    # print(func(1,2))


    #max,min,sorted,map,reduce,filter
    # salaries={
    # 'egon':3000,
    # 'alex':100000000,
    # 'wupeiqi':10000,
    # 'yuanhao':2000
    # }
    # print(max(salaries))

    # s='hello'
    # l=[1,2,3]
    # g=zip(s,l)
    # # print(g)
    # print(list(g))

    # g=zip(salaries.values(),salaries.keys())
    # # print(list(g))
    # print(max(g))

    # def func(k):
    # return salaries[k]

    # print(max(salaries,key=func)) #key=func('egon')

    # print(max(salaries,key=lambda k:salaries[k])) #key=func('egon')
    # print(min(salaries,key=lambda k:salaries[k])) #key=func('egon')






    #sorted
    # salaries={
    # 'egon':3000,
    # 'alex':100000000,
    # 'wupeiqi':10000,
    # 'yuanhao':2000
    # }
    # print(sorted(salaries,key=lambda k:salaries[k]))
    # print(sorted(salaries,key=lambda k:salaries[k],reverse=True))


    #map,reduce,filter
    # names=['alex','wupeiqi','yuanhao']
    # l=[]
    # for name in names:
    # res='%s_SB' %name
    # l.append(res)
    #
    # print(l)

    # g=map(lambda name:'%s_SB' %name,names)
    # # print(g)
    # print(list(g))


    # names=['alex_sb','wupeiqi_sb','yuanhao_sb','egon']
    # g=filter(lambda x:x.endswith('sb'),names)
    # print(g)
    # print(list(g))



    from functools import reduce
    print(reduce(
    lambda x,y:x+y,range(1,101),

    七、内置函数

    #了解
    # print(abs(-1))

    # print(all([1,'a','b',0]))
    # print(all([]))

    # print(any([None,False,0,1]))
    # print(any([]))


    # print(bin(11))
    # print(hex(11))
    # print(oct(11))

    # print('xxx'.encode('utf-8'))
    # print(bytes('xxx',encoding='utf-8'))

    # print(callable(max))

    # print(chr(65))
    # # print(chr(90))
    # # print(chr(39))
    # print(ord('A'))
    # print(ord('@'))


    # import os
    # print(dir(os))


    # s=set({1,2,3})
    # s.add(4)
    # print(s)

    # s=frozenset({1,2,3}) #不可变集合

    # print(hash('xxx'))

    # l=[1,2,'a',4]
    # print(list(reversed(l)))


    # s=slice(1,5,2)
    # l=['a','b','c','d','e']
    #
    # # print(l[1:5:2])
    # # print(l[1:5:2])
    #
    # print(l[s])


    # print(vars() is locals())


    #面向对象
    classmethod
    staticmethod
    property


    hasattr
    getattr
    setattr
    delattr

    isinstance
    issubclass

    object

    super

    # obj.__dict__() #vars(obj)

    #__import__
    # choice=input('>>: ')
    # print(choice,type(choice))
    #
    # # import 'time'
    # m=__import__(choice)
    # m.sleep(10)



    #掌握:
    #divmod
    # print(divmod(10011,25))


    #enumerate
    # l=['a','b','c']

    # for i in l:
    # print(l.index(i),i,)

    # for i,v in enumerate(l):
    # print(i,v)

    #eval:
    # res=eval('[1,2,3]')
    # print(res,type(res))

    # res=exec('[1,2,3]')
    # print(res)

    #pow
    # res=pow(2,3,3) # (2 ** 3 )%3
    # print(res)

    #round
    # print(round(3.5))


  • 相关阅读:
    mass Framework event模块 v9
    关于开源的网络爬虫/网络蜘蛛larbin结构分析
    socketaddr和socketaddr_in的区别于联系
    C语言中.h和.c文件解析
    [原]变参函数原理详解
    fopen和open有什么区别?
    C语言的那些小秘密之变参函数的实现
    c语言中逗号运算符和逗号表达式
    关于REST API设计的一些小经验
    Linux信号说明列表
  • 原文地址:https://www.cnblogs.com/tingting2199/p/8178373.html
Copyright © 2011-2022 走看看