Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6471 Accepted Submission(s): 3940
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
求最小逆序数,n个数,有n种形式
线段树和树状数组都能做。
线段树代码
#include<stdio.h> struct st { int l; int r; int sum; }f[4*5002]; int date[5002]; void build(int l,int r,int n) { int mid=(l+r)/2; f[n].l=l; f[n].r=r; if(l==r) f[n].sum=date[l]; else { build(l,mid,n*2); build(mid+1,r,n*2+1); f[n].sum=f[n*2].sum+f[n*2+1].sum; } } void update(int wz,int num,int n) { int mid=(f[n].l+f[n].r)/2,t; if(f[n].l==wz&&f[n].r==wz) { f[n].sum=f[n].sum+num; t=n/2; while(t) { f[t].sum=f[t*2].sum+f[t*2+1].sum; t=t/2; } } else if(mid>=wz) update(wz,num,n*2); else update(wz,num,n*2+1); } int getsum(int l,int r,int n) { int mid=(f[n].l+f[n].r)/2; if(f[n].l==l&&f[n].r==r) return f[n].sum; else if(mid>=r) getsum(l,r,n*2); else if(mid<l) getsum(l,r,n*2+1); else { return getsum(l,mid,n*2)+getsum(mid+1,r,n*2+1); } } int main() { int i,k,n,sum,s; while(scanf("%d",&n)>0) { for(i=1;i<=n;i++) date[i]=0; build(1,n,1); sum=0; for(i=1;i<=n;i++) { scanf("%d",&date[i]); date[i]++; } for(i=1;i<=n;i++) { update(date[i],1,1); k=getsum(1,date[i],1); sum=sum+i-k; } s=sum; for(i=1;i<=n;i++) { // printf("%d ",s); k=n-date[i]-(date[i]-1); s=s+k; if(s<sum) sum=s; } printf("%d\n",sum); } return 0; }
树状数组代码:
#include<stdio.h> int a[5003],d[5003]; int lowbit(int x) { return x&(-x); } int sum(int x,int *p) { int k=0; while(x) { k=k+p[x]; x=x-lowbit(x); } return k; } void add(int x,int n,int num,int *p) { int i; for(i=x;i<=n;i=i+lowbit(i)) p[i]=p[i]+num; } int main() { int i,j,k,n,m,cz,k1,k2,min; while(scanf("%d",&n)>0) { for(i=1;i<=n;i++) { scanf("%d",&a[i]); a[i]++; d[i]=0; } for(i=1,cz=0;i<=n;i++) { add(a[i],n,1,d); k1=i-sum(a[i],d); cz=k1+cz; } // printf("%d\n",cz); for(i=1,k1=0,min=cz;i<n;i++) { k1=n-a[i]; k2=-a[i]+1; min=k1+k2+min; // printf("%d ",k1+k2); if(min<cz) cz=min; } printf("%d\n",cz); } return 0; }