zoukankan      html  css  js  c++  java
  • bzoj 2818: Gcd GCD(a,b) = 素数

    2818: Gcd

    Time Limit: 10 Sec  Memory Limit: 256 MB
    Submit: 1566  Solved: 691
    [Submit][Status]

    Description

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
    数对(x,y)有多少对.

    Input

    一个整数N

    Output

    如题

    Sample Input

    4

    Sample Output

    4

    HINT

    hint

    对于样例(2,2),(2,4),(3,3),(4,2)


    1<=N<=10^7

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 
     7 typedef long long LL;
     8 const int maxn = 1e7+1;
     9 bool s[maxn];
    10 int prime[maxn],len = 0;
    11 int mu[maxn];
    12 int g[maxn];
    13 int sum1[maxn];
    14 void  init()
    15 {
    16     memset(s,true,sizeof(s));
    17     mu[1] = 1;
    18     for(int i=2; i<maxn; i++)
    19     {
    20         if(s[i] == true)
    21         {
    22             prime[++len]  = i;
    23             mu[i] = -1;
    24             g[i] = 1;
    25         }
    26         for(int j=1; j<=len && (long long)prime[j]*i<maxn; j++)
    27         {
    28             s[i*prime[j]] = false;
    29             if(i%prime[j]!=0)
    30             {
    31                 mu[i*prime[j]] = -mu[i];
    32                 g[i*prime[j]] = mu[i] - g[i];
    33             }
    34             else
    35             {
    36                 mu[i*prime[j]] = 0;
    37                 g[i*prime[j]] = mu[i];
    38                 break;
    39             }
    40         }
    41     }
    42     for(int i=1; i<maxn; i++)
    43         sum1[i] = sum1[i-1]+g[i];
    44 }
    45 
    46 int main()
    47 {
    48     int a;
    49     init();
    50     while(scanf("%d",&a)>0)
    51     {
    52         LL sum = 0;
    53         for(int i=1,la = 0 ; i<=a; i = la+1)
    54         {
    55             la = a/(a/i);
    56             sum = sum + (long long)(sum1[la] - sum1[i-1])*(a/i)*(a/i);
    57         }
    58         printf("%lld
    ",sum);
    59     }
    60     return 0;
    61 }

     spoj 

    4491. Primes in GCD Table

    Problem code: PGCD

    Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.

    Input

    First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.

    Output

    For each test case write one number - the number of prime numbers Johnny wrote in that test case.

    Example

    Input:
    2
    10 10
    100 100
    Output:
    30
    2791

    一样的题,只不过 GCD(x,y) = 素数 .  1<=x<=a ; 1<=y<=b;
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6  
     7 typedef long long LL;
     8 const int maxn = 1e7+1;
     9 bool s[maxn];
    10 int prime[maxn],len = 0;
    11 int mu[maxn];
    12 int g[maxn];
    13 int sum1[maxn];
    14 void  init()
    15 {
    16     memset(s,true,sizeof(s));
    17     mu[1] = 1;
    18     for(int i=2;i<maxn;i++)
    19     {
    20         if(s[i] == true)
    21         {
    22             prime[++len]  = i;
    23             mu[i] = -1;
    24             g[i] = 1;
    25         }
    26         for(int j=1;j<=len && (long long)prime[j]*i<maxn;j++)
    27         {
    28             s[i*prime[j]] = false;
    29             if(i%prime[j]!=0)
    30             {
    31                 mu[i*prime[j]] = -mu[i];
    32                 g[i*prime[j]] = mu[i] - g[i];
    33             }
    34             else
    35             {
    36                 mu[i*prime[j]] = 0;
    37                 g[i*prime[j]] = mu[i];
    38                 break;
    39             }
    40         }
    41     }
    42     for(int i=1;i<maxn;i++)
    43         sum1[i] = sum1[i-1]+g[i];
    44 }
    45  
    46 int main()
    47 {
    48     int T,a,b;
    49     init();
    50     scanf("%d",&T);
    51     while(T--)
    52     {
    53         scanf("%d%d",&a,&b);
    54         if(a>b) swap(a,b);
    55         LL sum = 0;
    56         for(int i=1,la = 0 ;i<=a;i = la+1)
    57         {
    58             la = min(a/(a/i),b/(b/i));
    59             sum = sum + (long long)(sum1[la] - sum1[i-1])*(a/i)*(b/i);
    60         }
    61         printf("%lld
    ",sum);
    62     }
    63     return 0;
    64 }
  • 相关阅读:
    Hyper-V中的VM如何使用Pass-through Disk
    LDF文件丢失, 如何仅用MDF文件恢复数据库呢?
    PowerShell中的一个switch的例子
    NetBiosDomainNamesEnabled与SharePoint User Profile Service Application
    在Windows Server 2008 R2上安装Exchange 2013过程中遇到的一些问题
    C语言位域精解(转)
    uniq命令 (转)
    sort命令
    curl命令(测试连接命令)
    C10K——千万级并发实现的秘密:内核不是解决方案,而是问题所在!(转)
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3938477.html
Copyright © 2011-2022 走看看