zoukankan      html  css  js  c++  java
  • poj 1458 Common Subsequence【LCS】

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43132   Accepted: 17472

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    虽然还没有太理解这个算法,不过还是先贴上吧
    #include<stdio.h>
    #include<string.h>
    #define MAX 1100
    #define maxn(x,y)(x>y?x:y)
    char s1[MAX],s2[MAX];
    int dp[MAX][MAX];
    int main()
    {
    	int i,j,len1,len2;
    	memset(dp,0,sizeof(dp));
    	while(scanf("%s%s",s1,s2)!=EOF)
    	{
    		len1=strlen(s1);
    		len2=strlen(s2);
    		for(i=1;i<=len1;i++)
    		{
    			for(j=1;j<=len2;j++)
    		    {
    		    	if(s1[i-1]==s2[j-1])
    		    	dp[i][j]=dp[i-1][j-1]+1;
    		    	else
    		    	dp[i][j]=maxn(dp[i][j-1],dp[i-1][j]);
    			}
    		}
    		printf("%d
    ",dp[len1][len2]);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    移动端开发 rem 案例
    html基值 仿淘宝
    使用FreeSWITCH做电话自动回访设置
    Nodejs 实现ESL内联FreeSWITCH设定说明
    ADC自动转接功能Lua实现
    sipML5聊天功能实现
    FreeSWITCH与PSTN对接
    FreeSWITCH Git版本管理
    FreeSWITCH Git版本管理
    SIP 认证
  • 原文地址:https://www.cnblogs.com/tonghao/p/4717192.html
Copyright © 2011-2022 走看看