zoukankan      html  css  js  c++  java
  • poj 1458 Common Subsequence【LCS】

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43132   Accepted: 17472

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    虽然还没有太理解这个算法,不过还是先贴上吧
    #include<stdio.h>
    #include<string.h>
    #define MAX 1100
    #define maxn(x,y)(x>y?x:y)
    char s1[MAX],s2[MAX];
    int dp[MAX][MAX];
    int main()
    {
    	int i,j,len1,len2;
    	memset(dp,0,sizeof(dp));
    	while(scanf("%s%s",s1,s2)!=EOF)
    	{
    		len1=strlen(s1);
    		len2=strlen(s2);
    		for(i=1;i<=len1;i++)
    		{
    			for(j=1;j<=len2;j++)
    		    {
    		    	if(s1[i-1]==s2[j-1])
    		    	dp[i][j]=dp[i-1][j-1]+1;
    		    	else
    		    	dp[i][j]=maxn(dp[i][j-1],dp[i-1][j]);
    			}
    		}
    		printf("%d
    ",dp[len1][len2]);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    设计模式总结
    内存模型
    运行时内存
    网络
    iOS安全攻防(十)dump自己的app
    iOS安全攻防(九)使用Theos开发SpringBoard的Tweat
    iOS安全攻防(八)Thoes的Logos简介
    iOS安全攻防(七)使用iOSOpenDev开发SpringBoard的Tweat
    iOS安全攻防(六)使用class-dump导出Frameworks头文件
    iOS安全攻防(五)使用dpkg安装deb到iOS设备
  • 原文地址:https://www.cnblogs.com/tonghao/p/4717192.html
Copyright © 2011-2022 走看看