zoukankan      html  css  js  c++  java
  • poj 1458 Common Subsequence【LCS】

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43132   Accepted: 17472

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    虽然还没有太理解这个算法,不过还是先贴上吧
    #include<stdio.h>
    #include<string.h>
    #define MAX 1100
    #define maxn(x,y)(x>y?x:y)
    char s1[MAX],s2[MAX];
    int dp[MAX][MAX];
    int main()
    {
    	int i,j,len1,len2;
    	memset(dp,0,sizeof(dp));
    	while(scanf("%s%s",s1,s2)!=EOF)
    	{
    		len1=strlen(s1);
    		len2=strlen(s2);
    		for(i=1;i<=len1;i++)
    		{
    			for(j=1;j<=len2;j++)
    		    {
    		    	if(s1[i-1]==s2[j-1])
    		    	dp[i][j]=dp[i-1][j-1]+1;
    		    	else
    		    	dp[i][j]=maxn(dp[i][j-1],dp[i-1][j]);
    			}
    		}
    		printf("%d
    ",dp[len1][len2]);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    iptables允许FTP
    FTP服务添加用户及设置权限
    Python之异步IO&RabbitMQ&Redis
    Python之生产者&、消费者模型
    如何使用Git上传项目代码到github
    11-3 基于cookie和session的登录模块
    11-1 会话控制cookie
    11-2 会话控制session
    10-4 文件的下载
    10-3 文件的上传
  • 原文地址:https://www.cnblogs.com/tonghao/p/4717192.html
Copyright © 2011-2022 走看看