zoukankan      html  css  js  c++  java
  • hdoj 1384 Intervals

    Intervals

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3332    Accepted Submission(s): 1227


    Problem Description
    You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.

    Write a program that:

    > reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

    > computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

    > writes the answer to the standard output
     
    Input
    The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

    Process to the end of file.

     
    Output
    The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.
     
    Sample Input
    5
    3 7 3
    8 10 3
    6 8 1
    1 3 1
    10 11 1
     
    Sample Output
    6
     
    题意:给出n个区间的左右端点,和这个区间内至少存在的在集合s中的点的个数,让你求集合s中最少有多少个点
    题解:重在找到差分约束的约束条件,将约束条件转化为xj-xi<=k的形式,然后建立一条从i到j权值为k的边;
    设maxl为区间的左端点,maxr为区间的右端点,S[i] 表示集合Z里面的元素在区间[0, i ]的个数,Maxl,Maxr分别表示所有区间里面的最左端和最右端,dist[]数组存储源点到某点的最短路。则由题意得限制条件
    一 S[right] -  S[left-1] >= least 即[left, right]区间个数不小于least,转换得S[left-1] - S[right] <= least;
    二 0 <= S[i] - S[i-1] <= 1转换得 S[i-1] - S[i] <= 0 && S[i] - S[i-1] <= 1。
    第二个条件题中并没有给出,需要自己推导,因为仅仅靠题中的条件无法构建一个连通图,也就无法求最短路,因为s[i]表示的是集合Z里面的元素在区间[0, i ]的个数所以s[i]至多比s[i-1]大一也可能相等
    然后根据限制条件建图
    转化问题:题目需要求的是S[Maxr] - S[Maxl-1] >= ans 即S[Maxl-1] - S[Maxr] <= -ans。 若以Maxr为源点 ,而-ans就为Maxr到Maxl-1的最短路径的相反数,即-dist[Maxl-1]。
     
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    #define INF 0x3f3f3f
    #define MAX 200000
    #include<algorithm>
    using namespace std;
    int n,ans;
    int maxl,maxr;
    int vis[MAX],dis[MAX];
    int head[MAX];
    struct node
    {
    	int u,v,w;
    	int next;
    }edge[MAX];
    void add(int u,int v,int w)
    {
    	edge[ans].u=u;
    	edge[ans].v=v;
    	edge[ans].w=w;
    	edge[ans].next=head[u];
    	head[u]=ans++;
    }
    void init()
    {
    	ans=0;
    	maxl=INF;
    	maxr=0;
    	memset(head,-1,sizeof(head));
    }
    void getmap()
    {
    	int i,j,a,b,c;
    	while(n--)
    	{
    		scanf("%d%d%d",&a,&b,&c);
    		maxl=min(maxl,a);
    		maxr=max(maxr,b);
    		add(b,a-1,-c);
    	}
    	for(i=maxl;i<=maxr;i++)
    	{
    		add(i,i-1,0);
    		add(i-1,i,1);
    	}
    }
    void spfa()
    {
    	int i,j;
    	queue<int>q;
    	memset(vis,0,sizeof(vis));
    	for(i=maxl-1;i<=maxr;i++)//以maxr为源点,也可以以maxl为源点,不过要对建图稍作修改 
    	    dis[i]=INF;
    	dis[maxr]=0;
    	vis[maxr]=1;
    	q.push(maxr);
    	while(!q.empty())
    	{
    		int u=q.front();
    		q.pop();
    		vis[u]=0;
    		for(i=head[u];i!=-1;i=edge[i].next)
    		{
    			int top=edge[i].v;
    			if(dis[top]>dis[u]+edge[i].w)
    			{
    				dis[top]=dis[u]+edge[i].w;
    				if(!vis[top])
    				{
    					vis[top]=1;
    					q.push(top);
    				}
    			}
    		}
    	}
    	printf("%d
    ",-dis[maxl-1]);
    }
    int main()
    {
    	while(scanf("%d",&n)!=EOF)
    	{
    		init();
    		getmap();
    		spfa();
    	}
    	return 0;
    }
    

      

     
     
  • 相关阅读:
    iOS 8以后 定位手动授权问题
    IOS int NSInteger NSNumber区分
    Java基础知识(JAVA集合框架之List与Set)
    Java基础知识(JAVA基本数据类型包装类)
    Java基础知识(JAVA中String、StringBuffer、StringBuilder类的区别)
    Java基础知识(重载和覆盖)
    Java基础知识(抽象类和接口)
    host文件
    天猫页面显示错位
    专题8:javascript函数详解
  • 原文地址:https://www.cnblogs.com/tonghao/p/4743583.html
Copyright © 2011-2022 走看看