zoukankan      html  css  js  c++  java
  • BestCoder Round #66 (div.2) hdu5592

    GTW likes math

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 942    Accepted Submission(s): 426


    Problem Description
    After attending the class given by Jin Longyu, who is a specially-graded teacher of Mathematics, GTW started to solve problems in a book titled “From Independent Recruitment to Olympiad”. Nevertheless, there are too many problems in the book yet GTW had a sheer number of things to do, such as dawdling away his time with his young girl. Thus, he asked you to solve these problems.

    In each problem, you will be given a function whose form is like f(x)=ax2+bx+c. Your assignment is to find the maximum value and the minimum value in the integer domain [l,r].
     
    Input
    The first line of the input file is an integer T, indicating the number of test cases. (T1000)

    In the following T lines, each line indicates a test case, containing 5 integers, a,b,c,l,r. (|a|,|b|,|c|100,|l||r|100), whose meanings are given above.
     
    Output
    In each line of the output file, there should be exactly two integers, max and min, indicating the maximum value and the minimum value of the given function in the integer domain [l,r], respectively, of the test case respectively.
     
    Sample Input
    1
    1 1 1 1 3
     
    Sample Output
    13 3
    Hint
    $f_1=3,f_2=7,f_3=13,max=13,min=3$
     
    题意,给你一个方程a*x*x+b*x+c和一个取值范围【l,r】问当x在此区间内取值时,函数的最大值和最小值分别是多少
     
    直接暴力求解
    #include<stdio.h>
    #include<string.h>
    #include<string>
    #include<math.h>
    #include<algorithm>
    #define LL long long
    #define PI atan(1.0)*4
    #define DD double
    #define MAX 110
    #define mod 10007
    #define dian 1.000000011
    #define INF 0x3f3f3f
    using namespace std;
    int main()
    {
        int t,Min,Max,i,j;
        int a,b,c,l,r,ans;
        scanf("%d",&t);
        while(t--)
        {
        	scanf("%d%d%d%d%d",&a,&b,&c,&l,&r);
        	ans=0;Max=-INF;
        	Min=INF;
        	if(l>=0)  //区间内全是正数 
        	{
        		for(i=l;i<=r;i++)
        		{
        			ans=a*i*i+b*i+c;
        			Max=max(Max,ans);
        			Min=min(Min,ans);
        		}
        	}
        	else
        	{
        		//printf("%d*
    ",abs(l));
        		if(r>=0)  //区间内有负有正 
        		{
        			for(i=1;i<=abs(l);i++)
    	    		{
    	    			j=0-i;
    	    			//printf("%d*
    ",j);
    	    			ans=a*j*j+b*j+c;
    	    			Max=max(Max,ans);
    	    			Min=min(Min,ans);
    	    		}
    	    		for(i=0;i<=r;i++)
    	    		{
    	    			ans=a*i*i+b*i+c;
    	    			Max=max(Max,ans);
    	    			Min=min(Min,ans);
    	    		}
        		}
        		else//区间内全是负数 
        		{
        			for(i=abs(r);i<=abs(l);i++)
    	    		{
    	    			j=0-i;
    	    			//printf("%d*
    ",j);
    	    			ans=a*j*j+b*j+c;
    	    			Max=max(Max,ans);
    	    			Min=min(Min,ans);
    	    		}
        		}
        	}
        	printf("%d %d
    ",Max,Min);
        }
    	return 0;
    } 
    

      

  • 相关阅读:
    Echarts关于仪表盘
    Echarts CPU监控 (折线仪表盘,图例混搭)
    物联网温度服务器-ECharts、HTML5、JavaScript / ECharts gauge使用示例
    eCharts使用图表简单示例
    Andorid之ActivityManager
    IOS之NSFileManager 和NSFileHandle
    IOS UITableView多选删除功能
    IOS Xib使用——Xib表示局部界面
    Android典型界面设计(8) ——ViewPager+PagerSlidingTabStrip实现双导航
    IOS程式语法之block的使用掌握
  • 原文地址:https://www.cnblogs.com/tonghao/p/5231956.html
Copyright © 2011-2022 走看看