Another palindrome related problem. Actually nothing too theoretical here, but please keep following hints in mind:
1. How to check whether a natural number is Palindrome
Not sure whether there's closed form to Palindrome, I simply used a naive algorithm to check: log10() to get number of digits, and check mirrored digits.
2. Pre calculation
1<=a<=b<=1000. so we can precalculate all Palindromes within that range beforehand.
3. Understand problem statement, only start from a Palindrome
For each range, it must start from a Palindrome - we can simply skip non-Palindromes. And don't forget to remove all tailing non-Palindromes.
// 692 Fruit Farm #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib> using namespace std; ///////////////////////// #define gc getchar_unlocked int read_int() { char c = gc(); while(c<'0' || c>'9') c = gc(); int ret = 0; while(c>='0' && c<='9') { ret = 10 * ret + c - 48; c = gc(); } return ret; } int read_string(char *p) { int cnt = 0; char c; while((c = gc()) == ' '); // skip spaces // while(c != 10) { p[cnt ++] = c; c = gc(); } return cnt; } void print_fast(const char *p, int len) { fwrite(p, 1, len, stdout); } ///////////////////////// bool isPalin(int n) { if(n >= 1 && n < 10) return true; // Get digit length int nDigits = 1 + (int)floor(log10(n * 1.0)); // Get separated digits int digits[5] = {0}; for(int i = 0; i < nDigits; i ++) { int d = n / (int)pow(10.0, i*1.0) % 10; digits[i] = d; } // Check digits bool bEven = nDigits % 2 == 0; int inxLow = nDigits / 2 - 1; int inxHigh = (nDigits / 2) + (bEven ? 0 : 1); int nDigits2Check = nDigits / 2; for(int i = 0; i < nDigits2Check; i ++) { if(digits[inxLow] != digits[inxHigh]) return false; inxLow --; inxHigh ++; } return true; } bool Palin[1000] = {false}; void precalc_palin() { for(int i = 1; i <= 1000; i ++) { if(isPalin(i)) { Palin[i-1] = true; //printf("%d ", i); } } //printf(" "); } void calc(int a, int b, int l) { int rcnt = 0; int mya = 0, myb = 0; for(int i = a; i <= b; i++) { if(!Palin[i-1]) continue; //printf("At %d ", i); int cnt = 0; int bound = min(b, i + l - 1); for(int j = i; j <= bound; j ++) { if(Palin[j-1]) cnt ++; } //printf("[%d, %d] = %d ", i, bound, cnt); if(cnt > rcnt) { rcnt = cnt; mya = i; myb = bound; } } // shrink if(rcnt > 0) { while(!Palin[myb-1]) myb--; printf("%d %d ", mya, myb); } else { printf("Barren Land. "); } } int main() { // pre-calc all palindrome in [1-1000] precalc_palin(); int runcnt = read_int(); while(runcnt--) { int a = read_int(); int b = read_int(); int l = read_int(); calc(a, b, l); } return 0; }