zoukankan      html  css  js  c++  java
  • Deep learning:十一(PCA和whitening在二维数据中的练习)

      前言:

      这节主要是练习下PCA,PCA Whitening以及ZCA Whitening在2D数据上的使用,2D的数据集是45个数据点,每个数据点是2维的。参考的资料是:Exercise:PCA in 2D。结合前面的博文Deep learning:十(PCA和whitening)理论知识,来进一步理解PCA和Whitening的作用。

      matlab某些函数:

      scatter:

      scatter(X,Y,<S>,<C>,’<type>’);
      <S> – 点的大小控制,设为和X,Y同长度一维向量,则值决定点的大小;设为常数或缺省,则所有点大小统一。
      <C> – 点的颜色控制,设为和X,Y同长度一维向量,则色彩由值大小线性分布;设为和X,Y同长度三维向量,则按colormap RGB值定义每点颜色,[0,0,0]是黑色,[1,1,1]是白色。缺省则颜色统一。
      <type> – 点型:可选filled指代填充,缺省则画出的是空心圈。

      plot:

      plot可以用来画直线,比如说plot([1 2],[0 4])是画出一条连接(1,0)到(2,4)的直线,主要点坐标的对应关系。

      实验过程:

      一、首先download这些二维数据,因为数据是以文本方式保存的,所以load的时候是以ascii码读入的。然后对输入样本进行协方差矩阵计算,并计算出该矩阵的SVD分解,得到其特征值向量,在原数据点上画出2条主方向,如下图所示:

       

      二、将经过PCA降维后的新数据在坐标中显示出来,如下图所示:

       

      三、用新数据反过来重建原数据,其结果如下图所示:

       

      四、使用PCA whitening的方法得到原数据的分布情况如:

       

      五、使用ZCA whitening的方法得到的原数据的分布如下所示:

       

      PCA whitening和ZCA whitening不同之处在于处理后的结果数据的方差不同,尽管不同维度的方差是相等的。

      实验代码:

    close all
    
    %%================================================================
    %% Step 0: Load data
    %  We have provided the code to load data from pcaData.txt into x.
    %  x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to
    %  the kth data point.Here we provide the code to load natural image data into x.
    %  You do not need to change the code below.
    
    x = load('pcaData.txt','-ascii');
    figure(1);
    scatter(x(1, :), x(2, :));
    title('Raw data');
    
    
    %%================================================================
    %% Step 1a: Implement PCA to obtain U 
    %  Implement PCA to obtain the rotation matrix U, which is the eigenbasis
    %  sigma. 
    
    % -------------------- YOUR CODE HERE -------------------- 
    u = zeros(size(x, 1)); % You need to compute this
    [n m] = size(x);
    %x = x-repmat(mean(x,2),1,m);%预处理,均值为0
    sigma = (1.0/m)*x*x';
    [u s v] = svd(sigma);
    
    
    % -------------------------------------------------------- 
    hold on
    plot([0 u(1,1)], [0 u(2,1)]);%画第一条线
    plot([0 u(1,2)], [0 u(2,2)]);%第二条线
    scatter(x(1, :), x(2, :));
    hold off
    
    %%================================================================
    %% Step 1b: Compute xRot, the projection on to the eigenbasis
    %  Now, compute xRot by projecting the data on to the basis defined
    %  by U. Visualize the points by performing a scatter plot.
    
    % -------------------- YOUR CODE HERE -------------------- 
    xRot = zeros(size(x)); % You need to compute this
    xRot = u'*x;
    
    
    % -------------------------------------------------------- 
    
    % Visualise the covariance matrix. You should see a line across the
    % diagonal against a blue background.
    figure(2);
    scatter(xRot(1, :), xRot(2, :));
    title('xRot');
    
    %%================================================================
    %% Step 2: Reduce the number of dimensions from 2 to 1. 
    %  Compute xRot again (this time projecting to 1 dimension).
    %  Then, compute xHat by projecting the xRot back onto the original axes 
    %  to see the effect of dimension reduction
    
    % -------------------- YOUR CODE HERE -------------------- 
    k = 1; % Use k = 1 and project the data onto the first eigenbasis
    xHat = zeros(size(x)); % You need to compute this
    xHat = u*([u(:,1),zeros(n,1)]'*x);
    
    
    % -------------------------------------------------------- 
    figure(3);
    scatter(xHat(1, :), xHat(2, :));
    title('xHat');
    
    
    %%================================================================
    %% Step 3: PCA Whitening
    %  Complute xPCAWhite and plot the results.
    
    epsilon = 1e-5;
    % -------------------- YOUR CODE HERE -------------------- 
    xPCAWhite = zeros(size(x)); % You need to compute this
    xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*u'*x;
    
    
    
    % -------------------------------------------------------- 
    figure(4);
    scatter(xPCAWhite(1, :), xPCAWhite(2, :));
    title('xPCAWhite');
    
    %%================================================================
    %% Step 3: ZCA Whitening
    %  Complute xZCAWhite and plot the results.
    
    % -------------------- YOUR CODE HERE -------------------- 
    xZCAWhite = zeros(size(x)); % You need to compute this
    xZCAWhite = u*diag(1./sqrt(diag(s)+epsilon))*u'*x;
    
    % -------------------------------------------------------- 
    figure(5);
    scatter(xZCAWhite(1, :), xZCAWhite(2, :));
    title('xZCAWhite');
    
    %% Congratulations! When you have reached this point, you are done!
    %  You can now move onto the next PCA exercise. :)

      参考资料:

         Exercise:PCA in 2D

         Deep learning:十(PCA和whitening)

    作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。 (新浪微博:tornadomeet,欢迎交流!)
  • 相关阅读:
    8. Automatic Properties(自动属性)
    egg文件安装
    [翻译]深入理解Tornado——一个异步web服务器
    tornado模板的自动编码问题(autoescape )
    PIL的IOError: decoder jpeg not available错误的排除方法
    MongoDB的更新问题
    easy_install
    _imaging.c:75:20: 致命错误: Python.h:没有那个文件或目录
    各类情感的能量等级&大自然与人类能量级别的关系(转)
    python的装饰器(property)
  • 原文地址:https://www.cnblogs.com/tornadomeet/p/2973631.html
Copyright © 2011-2022 走看看