zoukankan      html  css  js  c++  java
  • 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    def distort_color(image, color_ordering=0):
        '''
        随机调整图片的色彩,定义两种处理顺序。
        '''
        if color_ordering == 0:
            image = tf.image.random_brightness(image, max_delta=32./255.)
            image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
            image = tf.image.random_hue(image, max_delta=0.2)
            image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
        else:
            image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
            image = tf.image.random_brightness(image, max_delta=32./255.)
            image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
            image = tf.image.random_hue(image, max_delta=0.2)
    
        return tf.clip_by_value(image, 0.0, 1.0)
    
    
    def preprocess_for_train(image, height, width, bbox):
    
        # 查看是否存在标注框。
        if image.dtype != tf.float32:
            image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    
        # 随机的截取图片中一个块。
        bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
            tf.shape(image), bounding_boxes=bbox)
        bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
            tf.shape(image), bounding_boxes=bbox)
        distorted_image = tf.slice(image, bbox_begin, bbox_size)
    
        # 将随机截取的图片调整为神经网络输入层的大小。
        distorted_image = tf.image.resize_images(distorted_image, [height, width], method=np.random.randint(4))
        distorted_image = tf.image.random_flip_left_right(distorted_image)
        distorted_image = distort_color(distorted_image, np.random.randint(2))
        return distorted_image
    
    def pre_main(img,bbox=None):
        if bbox is None:
            bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
        with tf.gfile.FastGFile(img, "rb") as f:
            image_raw_data = f.read()
        with tf.Session() as sess:
            img_data = tf.image.decode_jpeg(image_raw_data)
            for i in range(9):
                result = preprocess_for_train(img_data, 299, 299, bbox)
    
                plt.imshow(result.eval())
                plt.axis('off')
                plt.savefig("E:\myresource\代号{}".format(i))
    
    
    pre_main("E:\myresource\moutance.jpg",bbox=None)
    exit()

  • 相关阅读:
    vue-ssr优化
    学习基础笔记1
    js原型链继承图
    浏览器缓存和Service Worker
    react项目启动详解(转载)
    深拷贝js对象或数组
    css多边形
    css三角形
    字体文件使用及压缩
    前端调试效率低?试试这10个“Chrome开发者工具”使用技巧
  • 原文地址:https://www.cnblogs.com/tszr/p/10821705.html
Copyright © 2011-2022 走看看