import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[-2]] ]) print("Matrix shape is: ",M.shape)
filter_weight = tf.get_variable('weights', [2, 2, 1, 1], initializer = tf.constant_initializer([[1, -1],[0, 2]])) biases = tf.get_variable('biases', [1], initializer = tf.constant_initializer(1))
M = np.asarray(M, dtype='float32') M = M.reshape(1, 3, 3, 1)
x = tf.placeholder('float32', [1, None, None, 1]) conv = tf.nn.conv2d(x, filter_weight, strides = [1, 2, 2, 1], padding = 'SAME') bias = tf.nn.bias_add(conv, biases) pool = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') with tf.Session() as sess: tf.global_variables_initializer().run() convoluted_M = sess.run(bias,feed_dict={x:M}) pooled_M = sess.run(pool,feed_dict={x:M}) print("convoluted_M: ", convoluted_M) print("pooled_M: ", pooled_M)