import tensorflow as tf
a = tf.ones([2, 2])
a
tf.sqrt(tf.reduce_sum(tf.square(a)))
a = tf.ones([4, 28, 28, 3])
a.shape
tf.sqrt(tf.reduce_sum(tf.square(a)))
b = tf.ones([2, 2])
tf.norm(b)
tf.norm(b, ord=2, axis=1)
tf.norm(b, ord=1)
# 列为整体
tf.norm(b, ord=1, axis=0)
# 行为整体
tf.norm(b, ord=1, axis=1)
reduce,操作可能会有减维的功能,如[2,2],对行求max,会变成[2]
a = tf.random.normal([4, 10])
tf.reduce_min(a), tf.reduce_max(a), tf.reduce_mean(a)
# 对某一行求max
tf.reduce_min(a, axis=1), tf.reduce_max(a, axis=1), tf.reduce_mean(a, axis=1)
# 对第1维作用
tf.argmin(a).shape
# 对第2维作用
tf.argmin(a, axis=1).shape
a = tf.constant([1, 2, 3, 2, 5])
b = tf.range(5)
tf.equal(a, b)
res = tf.equal(a, b)
# 对True和False转换为1和0
tf.reduce_sum(tf.cast(res, dtype=tf.int32))
a = tf.random.normal([2, 3])
a
pred = tf.cast(tf.argmax(a, axis=1), dtype=tf.int32)
pred.shape
y = tf.constant([2, 1])
y
correct = tf.reduce_sum(tf.cast(tf.equal(y, pred), dtype=tf.int32))
correct
a = tf.constant([4, 2, 2, 4, 3])
a