zoukankan      html  css  js  c++  java
  • A*算法

    A*算法
    1.f(n) = g(n) + h(n)
    其中f(n) 是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目 标节点最佳路径的估计代价。

    2.
    Best_First_Search()
    {
        Open 
    = [起始节点]; Closed = [];
        
    while ( Open表非空 )
        {
            从Open中取得一个节点X,并从OPEN表中删除。
            
    if (X是目标节点)
            {
                求得路径PATH;返回路径PATH;
            }
            
    for (每一个X的子节点Y)
            {
                
    if( Y不在OPEN表和CLOSE表中 )
                {
                    求Y的估价值;并将Y插入OPEN表中;
    //还没有排序
                }
                
    else
                {
                    
    if( Y在OPEN表中 )
                    {
                        
    if( Y的估价值小于OPEN表的估价值 )
                        更新OPEN表中的估价值;
                    }
                    
    else //Y在CLOSE表中
                    {
                        
    if( Y的估价值小于CLOSE表的估价值 )
                        {
                        更新CLOSE表中的估价值;
                        从CLOSE表中移出节点,并放入OPEN表中;
                        }
                    }
                }

            }
    //end for
            将X节点插入CLOSE表中;
            按照估价值将OPEN表中的节点排序;
        }//end while
    }//end func

    g value can be lowered, and if so, you re-open it.

    代码
    OPEN = priority queue containing START
    CLOSED 
    = empty set
    while lowest rank in OPEN is not the GOAL:
      current 
    = remove lowest rank item from OPEN
      add current to CLOSED
      
    for neighbors of current:
        cost 
    = g(current) + movementcost(current, neighbor)
        
    if neighbor in OPEN and cost less than g(neighbor):
          remove neighbor from OPEN, because 
    new path is better
        
    if neighbor in CLOSED and cost less than g(neighbor): **
          remove neighbor from CLOSED
        
    if neighbor not in OPEN and neighbor not in CLOSED:
          
    set g(neighbor) to cost
          add neighbor to OPEN
          
    set priority queue rank to g(neighbor) + h(neighbor)
          
    set neighbor's parent to current

    reconstruct reverse path from goal to start
    by following parent pointers


    (**) This should never happen if you have an monotone admissible heuristic. However in games we often have inadmissible heuristics.

     


    3.
    void AstarPathfinder::FindPath(int sx, int sy, int dx, int dy)
    {
        NODE 
    *Node, *BestNode;
        
    int TileNumDest;
        
    //得到目标位置,作判断用
        TileNumDest = TileNum(sx, sy);
        
        
    //生成Open和Closed表
        OPEN=( NODE* )calloc(1,sizeof( NODE ));
        CLOSED
    =( NODE* )calloc(1,sizeof( NODE ));
        
        
    //生成起始节点,并放入Open表中
        Node=( NODE* )calloc(1,sizeof( NODE ));
        Node
    ->= 0;
        
        
    //这是计算h值        
        Node->= (dx-sx)*(dx-sx) + (dy-sy)*(dy-sy); //此处按道理应用开方
        
        
    //这是计算f值,即估价值
        Node->= Node->g+Node->h;
        Node
    ->NodeNum = TileNum(dx, dy);
        Node
    ->= dx;
        Node
    ->= dy;

        OPEN
    ->NextNode=Node;       // make Open List point to first node
        for (;;)
        {    
    //从Open表中取得一个估价值最好的节点
            BestNode=ReturnBestNode();
            
    //如果该节点是目标节点就退出
            if (BestNode->NodeNum == TileNumDest)  // if we've found the
                
    //end, break and finish
                break;
            
    //否则生成子节点
            GenerateSuccessors(BestNode,sx,sy);
        }
        PATH 
    = BestNode;
    }

    void AstarPathfinder::GenerateSuccessors(NODE *BestNode,int dx,int dy)
    {
        
    int x, y;
        
    //哦!依次生成八个方向的子节点,简单!
        
    // Upper-Left
        if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y-TILESIZE) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Upper
        if ( FreeTile(x=BestNode->x, y=BestNode->y-TILESIZE) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Upper-Right
        if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y-TILESIZE) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Right
        if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Lower-Right
        if ( FreeTile(x=BestNode->x+TILESIZE, y=BestNode->y+TILESIZE) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Lower
        if ( FreeTile(x=BestNode->x, y=BestNode->y+TILESIZE) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Lower-Left
        if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y+TILESIZE) )
            GenerateSucc(BestNode,x,y,dx,dy);
        
    // Left
        if ( FreeTile(x=BestNode->x-TILESIZE, y=BestNode->y) )
            GenerateSucc(BestNode,x,y,dx,dy);
    }

    void AstarPathfinder::GenerateSucc(NODE *BestNode,int x,int y,int dx,int dy)
    {
        
    int g, TileNumS, c = 0;
        NODE 
    *Old, *Successor;

        
    //计算子节点的g值          
        g = BestNode->g+1//g(Successor)=g(BestNode)+cost of getting
        
    //from BestNode to Successor
        TileNumS = TileNum(x,y);  // identification purposes

        
    //子节点再Open表中吗?       
        if ( (Old=CheckOPEN(TileNumS)) != NULL ) // if equal to NULL then
            
    //not in OPEN list, else it returns the Node in Old
        {
            
    //若在
            for( c = 0; c < 8; c++)
                
    if( BestNode->Child[c] == NULL ) // Add Old to the list of
                    
    // BestNode's Children (or Successors).
                    break;
            BestNode
    ->Child[c] = Old;
            
    //比较Open表中的估价值和当前的估价值(只要比较g值就可以了)
            if ( g < Old->g )  // if our new g value is < Old's then
                
    //reset Old's parent to point to BestNode
            {
                
    //当前的估价值小就更新Open表中的估价值
                Old->Parent = BestNode;
                Old
    ->= g;
                Old
    ->= g + Old->h;
            }
        }
        
    else //在Closed表中吗?
        {
            
    if ( (Old=CheckCLOSED(TileNumS)) != NULL ) // if equal to NULL then
                
    // not in OPEN list, else it returns the Node in Old
            {
                
    //若在
                for( c = 0; c< 8; c++)
                    
    if ( BestNode->Child[c] == NULL ) // Add Old to the list of
                        
    //BestNode's Children (or Successors).
                        break;
                BestNode
    ->Child[c] = Old;
                
    //比较Closed表中的估价值和当前的估价值(只要比较g值就可以了)
                if ( g < Old->g )  // if our new g value is < Old's then
                    
    // reset Old's parent to point to BestNode
                {
                    
    //当前的估价值小就更新Closed表中的估价值
                    Old->Parent = BestNode;
                    Old
    ->= g;
                    Old
    ->= g + Old->h;
                    
    //再依次更新Old的所有子节点的估价值
                    PropagateDown(Old);  // Since we changed the g value of
                    
    //Old,we need to propagate this new
                    
    //value downwards, i.e.
                    
    // do a Depth-First traversal of the tree!
                }
            }
            
    else//不在Open表中也不在Close表中
            {    
                
    //生成新的节点
                Successor = ( NODE* )calloc(1,sizeof( NODE ));
                Successor
    ->Parent = BestNode;
                Successor
    ->= g;
                Successor
    ->= (x-dx)*(x-dx) + (y-dy)*(y-dy);  // should do
                
    // sqrt(), but since we don't really
                Successor->= g+Successor->h; // care about the distance but
                
    //just which branch looks
                Successor->= x;              // better this should suffice.
                
    // Anyayz it's faster.
                Successor->= y;
                Successor
    ->NodeNum = TileNumS;
                
    //再插入Open表中,同时排序。
                Insert(Successor);     // Insert Successor on OPEN list wrt f
                for( c =0; c < 8; c++)
                    
    if ( BestNode->Child[c] == NULL ) // Add Old to the
                        
    // list of BestNode's Children (or Successors).
                        break;
                BestNode
    ->Child[c] = Successor;
            }
        }


    参考资料:
    [翻译]A*寻路初探 GameDev.net
    http://blog.vckbase.com/panic/archive/2005/03/20/3778.html

    [翻译]A*分层寻路
    http://blog.vckbase.com/panic/archive/2005/07/21/9906.html

    Fixing Pathfinding Once and For All
    http://www.ai-blog.net/archives/000152.html

    A*(A星)算法(一)
    http://hi.baidu.com/%BA%DA%B5%C4%B7%A2%D7%CF/blog/item/60e3483dce5bb8c29e3d62e0.html

    初识A*算法
    http://blog.csdn.net/zheng80037/archive/2007/06/04/1636953.aspx

    [翻译]在A*寻路中使用二叉堆
    http://blog.vckbase.com/panic/archive/2005/03/28/4144.html

    二叉堆的模板代码--续“关于一道算法题《编写算法,从10亿个浮点数当中,选出其中最大的10000个》”
    http://blog.vckbase.com/panic/archive/2006/06/19/20869.html
  • 相关阅读:
    C++11: reference_wrapper
    mac 查看目前哪些进程占用哪些端口
    Intellij IDEA 10.5 语言设置
    linux中的strip命令简介------给文件脱衣服
    HashMap的key可以是可变的对象吗???
    java BIO/NIO/AIO 学习
    java 反射
    Java线程同步
    maven modules
    设计模式在cocos2d-x中的使用--简单工厂模式(Simple Factory)
  • 原文地址:https://www.cnblogs.com/tuzhiye/p/1657668.html
Copyright © 2011-2022 走看看