zoukankan      html  css  js  c++  java
  • word2vector的tensorflow代码实现

    import collections
    import math
    import os
    import random
    import zipfile
    import numpy as np
    import urllib.request as request
    import tensorflow as tf
    
    url = 'http://mattmahoney.net/dc/'
    
    def maybe_download(filename,expected_bytes):
        if not os.path.exists(filename):
            filename,_ = request.urlretrieve(url+filename,filename)
        statinfo = os.stat(filename)
        if statinfo.st_size == expected_bytes:
            print('Found and verified',filename)
        else:
            print(statinfo.st_size)
            raise Exception('Failed to verify' + filename + '.Can you get to it with a browser?')
        return filename
    
    filename = maybe_download('text8.zip',31344016)
    
    def read_data(filename):
        with zipfile.ZipFile(filename) as f:
            data = tf.compat.as_str(f.read(f.namelist()[0])).split()
        return data
    
    words = read_data(filename)
    print('Data size',len(words))
    
    vocabulary_size = 50000
    def build_dataset(words):
        count = [['UNK',-1]]
        count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
        dictionary = dict(zip(list(zip(*count))[0],range(len(list(zip(*count))[0]))))
        data = list()
        un_count = 0
    
        for word in words:
            if word in dictionary:
                index = dictionary[word]
            else:
                index = 0
                un_count += 1
            data.append(index)
        count[0][1] = un_count
        reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys()))
        return data,reverse_dictionary,dictionary,count
    data,reverse_dictionary,dictionary,count = build_dataset(words)
    del words
    
    data_index = 0
    def generate_batch(batch_size,num_skips,skip_window):
        global data_index
        assert num_skips <= 2 * skip_window
        assert batch_size % num_skips == 0
        span = 2 * skip_window + 1
        batch = np.ndarray(shape=[batch_size],dtype=np.int32)
        labels = np.ndarray(shape=[batch_size,1],dtype=np.int32)
        buffer = collections.deque(maxlen=span)
        #初始化
        for i in range(span):
            buffer.append(data[data_index])
            data_index = (data_index + 1) % len(data)
        #移动窗口,获取批量数据
        for i in range(batch_size // num_skips):
            target = skip_window
            avoid_target = [skip_window]
            for j in range(num_skips):
                while target in avoid_target:
                    target = np.random.randint(0,span - 1)
                avoid_target.append(target)
                batch[i * num_skips + j] = buffer[skip_window]
                labels[i * num_skips + j,0] = buffer[target]
    
            buffer.append(data[data_index])
            data_index = (data_index + 1) % len(data)
        return batch,labels
    
    batch_size = 128
    embedding_size = 128
    skip_window = 1
    num_skips = 2
    
    valid_size = 16
    valid_window = 100
    valid_examples = np.random.choice(valid_window,valid_size,replace=False)
    num_sampled = 64
    
    with tf.Graph().as_default() as graph:
        train_inputs = tf.placeholder(tf.int32,shape=[batch_size])
        train_labels = tf.placeholder(tf.int32,shape=[batch_size,1])
        valid_dataset = tf.constant(valid_examples,dtype=tf.int32)
    
        with tf.device('/cpu:0'):
            embeddings = tf.Variable(tf.random_uniform(shape=[vocabulary_size,embedding_size],minval=-1.0,maxval=1.0))
            embed = tf.nn.embedding_lookup(embeddings,train_inputs)
            nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size)))
            nce_bias = tf.Variable(tf.zeros([vocabulary_size]))
    
            loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights,biases =nce_bias,labels=train_labels,inputs=embed,num_sampled=num_sampled,num_classes=vocabulary_size))
            optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
            norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims=True))
            normalized_embeddings = embeddings / norm
            valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
            similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
        init = tf.global_variables_initializer()
    
        num_steps = 100001
    
        with tf.Session(graph=graph) as session:
            init.run()
            print("initialized")
    
            average_loss = 0.0
            for step in range(num_steps):
                batch_inputs,batch_labels = generate_batch(batch_size,num_skips,skip_window)
                feed_dict = {train_inputs:batch_inputs,train_labels:batch_labels}
    
                _,loss_val = session.run([optimizer,loss],feed_dict=feed_dict)
                average_loss += loss_val
                if step % 2000 == 0:
                    if step > 0:
                        average_loss /= 2000
                    print("Average loss at step",step,":",average_loss)
                    average_loss = 0
                if step % 10000 == 0:
                    sim = similarity.eval()
                    for i in range(valid_size):
                        valid_word = reverse_dictionary[valid_examples[i]]
                        top_k = 8
                        nearest = (-sim[i,:]).argsort()[1:top_k+1]
                        log_str = "Nearest to %s:" % valid_word
                        for k in range(top_k):
                            close_word = reverse_dictionary[nearest[k]]
                            log_str = "%s %s," % (log_str,close_word)
                        print(log_str)
            final_embeddings = normalized_embeddings.eval()
    
  • 相关阅读:
    数字图像处理领域就业前景
    opencv 学习方法
    学习opencv tutorials
    win64+VS2010+OPENCV2.4.9配置问题
    libsvm使用步骤
    生成libSVM的数据格式及使用方法
    一堆应该记住的概念
    static静态变量的理解
    C程第一节课
    扫雷但是不会恭喜
  • 原文地址:https://www.cnblogs.com/txq157/p/7516215.html
Copyright © 2011-2022 走看看