import collections import math import os import random import zipfile import numpy as np import urllib.request as request import tensorflow as tf url = 'http://mattmahoney.net/dc/' def maybe_download(filename,expected_bytes): if not os.path.exists(filename): filename,_ = request.urlretrieve(url+filename,filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified',filename) else: print(statinfo.st_size) raise Exception('Failed to verify' + filename + '.Can you get to it with a browser?') return filename filename = maybe_download('text8.zip',31344016) def read_data(filename): with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data words = read_data(filename) print('Data size',len(words)) vocabulary_size = 50000 def build_dataset(words): count = [['UNK',-1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict(zip(list(zip(*count))[0],range(len(list(zip(*count))[0])))) data = list() un_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 un_count += 1 data.append(index) count[0][1] = un_count reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys())) return data,reverse_dictionary,dictionary,count data,reverse_dictionary,dictionary,count = build_dataset(words) del words data_index = 0 def generate_batch(batch_size,num_skips,skip_window): global data_index assert num_skips <= 2 * skip_window assert batch_size % num_skips == 0 span = 2 * skip_window + 1 batch = np.ndarray(shape=[batch_size],dtype=np.int32) labels = np.ndarray(shape=[batch_size,1],dtype=np.int32) buffer = collections.deque(maxlen=span) #初始化 for i in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) #移动窗口,获取批量数据 for i in range(batch_size // num_skips): target = skip_window avoid_target = [skip_window] for j in range(num_skips): while target in avoid_target: target = np.random.randint(0,span - 1) avoid_target.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j,0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch,labels batch_size = 128 embedding_size = 128 skip_window = 1 num_skips = 2 valid_size = 16 valid_window = 100 valid_examples = np.random.choice(valid_window,valid_size,replace=False) num_sampled = 64 with tf.Graph().as_default() as graph: train_inputs = tf.placeholder(tf.int32,shape=[batch_size]) train_labels = tf.placeholder(tf.int32,shape=[batch_size,1]) valid_dataset = tf.constant(valid_examples,dtype=tf.int32) with tf.device('/cpu:0'): embeddings = tf.Variable(tf.random_uniform(shape=[vocabulary_size,embedding_size],minval=-1.0,maxval=1.0)) embed = tf.nn.embedding_lookup(embeddings,train_inputs) nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size))) nce_bias = tf.Variable(tf.zeros([vocabulary_size])) loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights,biases =nce_bias,labels=train_labels,inputs=embed,num_sampled=num_sampled,num_classes=vocabulary_size)) optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset) similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True) init = tf.global_variables_initializer() num_steps = 100001 with tf.Session(graph=graph) as session: init.run() print("initialized") average_loss = 0.0 for step in range(num_steps): batch_inputs,batch_labels = generate_batch(batch_size,num_skips,skip_window) feed_dict = {train_inputs:batch_inputs,train_labels:batch_labels} _,loss_val = session.run([optimizer,loss],feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 print("Average loss at step",step,":",average_loss) average_loss = 0 if step % 10000 == 0: sim = similarity.eval() for i in range(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 nearest = (-sim[i,:]).argsort()[1:top_k+1] log_str = "Nearest to %s:" % valid_word for k in range(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s %s," % (log_str,close_word) print(log_str) final_embeddings = normalized_embeddings.eval()