zoukankan      html  css  js  c++  java
  • DNN的BP算法Python简单实现

    BP算法是神经网络的基础,也是最重要的部分。由于误差反向传播的过程中,可能会出现梯度消失或者爆炸,所以需要调整损失函数。在LSTM中,通过sigmoid来实现三个门来解决记忆问题,用tensorflow实现的过程中,需要进行梯度修剪操作,以防止梯度爆炸。RNN的BPTT算法同样存在着这样的问题,所以步数超过5步以后,记忆效果大大下降。LSTM的效果能够支持到30多步数,太长了也不行。如果要求更长的记忆,或者考虑更多的上下文,可以把多个句子的LSTM输出组合起来作为另一个LSTM的输入。下面上传用Python实现的普通DNN的BP算法,激活为sigmoid.

    字迹有些潦草,凑合用吧,习惯了手动绘图,个人习惯。后面的代码实现思路是最重要的:每个层有多个节点,层与层之间单向链接(前馈网络),因此数据结构可以设计为单向链表。实现的过程属于典型的递归,递归调用到最后一层后把每一层的back_weights反馈给上一层,直到推导结束。上传代码(未经过优化的代码):

    测试代码:

    import numpy as np
    import NeuralNetWork as nw

    if __name__ == '__main__':
    print("test neural network")

    data = np.array([[1, 0, 0, 0, 0, 0, 0, 0],
    [0, 1, 0, 0, 0, 0, 0, 0],
    [0, 0, 1, 0, 0, 0, 0, 0],
    [0, 0, 0, 1, 0, 0, 0, 0],
    [0, 0, 0, 0, 1, 0, 0, 0],
    [0, 0, 0, 0, 0, 1, 0, 0],
    [0, 0, 0, 0, 0, 0, 1, 0],
    [0, 0, 0, 0, 0, 0, 0, 1]])

    np.set_printoptions(precision=3, suppress=True)


    for i in range(10):
    network = nw.NeuralNetWork([8, 20, 8])
    # 让输入数据与输出数据相等
    network.fit(data, data, learning_rate=0.1, epochs=150)

    print(" ", i, "result")
    for item in data:
    print(item, network.predict(item))
    #NeuralNetWork.py

    # encoding: utf-8
    #NeuralNetWork.py
    import numpy as np;
    
    def logistic(inX):
        return 1 / (1+np.exp(-inX))
    
    def logistic_derivative(x):
        return logistic(x) * (1 - logistic(x))
    
    
    class Neuron:
        '''
        构建神经元单元,每个单元都有如下属性:1.input;2.output;3.back_weight;4.deltas_item;5.weights.
        每个神经元单元更新自己的weights,多个神经元构成layer,形成weights矩阵
        '''
        def __init__(self,len_input):
            #输入的初始参数,随机取很小的值(<0.1)
            self.weights = np.random.random(len_input) * 0.1
            #当前实例的输入
            self.input = np.ones(len_input)
            #对下一层的输出值
            self.output = 1.0
            #误差项
            self.deltas_item = 0.0
            # 上一次权重增加的量,记录起来方便后面扩展时可考虑增加冲量
            self.last_weight_add = 0
    
        def calculate_output(self,x):
           #计算输出值
           self.input = x;
           self.output = logistic(np.dot(self.weights,self.input))
           return self.output
    
        def get_back_weight(self):
            #获取反馈差值
               return self.weights * self.deltas_item
    
        def update_weight(self,target = 0,back_weight = 0,learning_rate=0.1,layer="OUTPUT"):
            #更新权重
            if layer == "OUTPUT":
                self.deltas_item = (target - self.output) * logistic_derivative(self.input)
            elif layer == "HIDDEN":
                self.deltas_item = back_weight * logistic_derivative(self.input)
    
            delta_weight = self.input * self.deltas_item * learning_rate + 0.9 * self.last_weight_add #添加冲量
            self.weights += delta_weight
            self.last_weight_add = delta_weight
    
    class NetLayer:
        '''
        网络层封装,管理当前网络层的神经元列表
        '''
    
        def __init__(self,len_node,in_count):
            '''
            :param len_node: 当前层的神经元数
            :param in_count: 当前层的输入数
            '''
            # 当前层的神经元列表
            self.neurons = [Neuron(in_count) for _ in range(len_node)];
            # 记录下一层的引用,方便递归操作
            self.next_layer = None
    
        def calculate_output(self,inX):
            output = np.array([node.calculate_output(inX) for node in self.neurons])
            if self.next_layer is not None:
                return self.next_layer.calculate_output(output)
            return output
    
        def get_back_weight(self):
            return sum([node.get_back_weight() for node in self.neurons])
    
        def update_weight(self,learning_rate,target):
            layer = "OUTPUT"
            back_weight = np.zeros(len(self.neurons))
            if self.next_layer is not None:
                back_weight = self.next_layer.update_weight(learning_rate,target)
                layer = "HIDDEN"
            for i,node in enumerate(self.neurons):
                target_item = 0 if len(target) <= i else target[i]
                node.update_weight(target = target_item,back_weight = back_weight[i],learning_rate=learning_rate,layer=layer)
            return self.get_back_weight()
    
    class NeuralNetWork:
        def __init__(self, layers):
            self.layers = []
            self.construct_network(layers)
            pass
    
        def construct_network(self, layers):
            last_layer = None
            for i, layer in enumerate(layers):
                if i == 0:
                    continue
                cur_layer = NetLayer(layer, layers[i - 1])
                self.layers.append(cur_layer)
                if last_layer is not None:
                    last_layer.next_layer = cur_layer
                last_layer = cur_layer
    
        def fit(self, x_train, y_train, learning_rate=0.1, epochs=100000, shuffle=False):
            '''''
            训练网络, 默认按顺序来训练
            方法 1:按训练数据顺序来训练
            方法 2: 随机选择测试
            :param x_train: 输入数据
            :param y_train: 输出数据
            :param learning_rate: 学习率
            :param epochs:权重更新次数
            :param shuffle:随机取数据训练
            '''
            indices = np.arange(len(x_train))
            for _ in range(epochs):
                if shuffle:
                    np.random.shuffle(indices)
                for i in indices:
                    self.layers[0].calculate_output(x_train[i])
                    self.layers[0].update_weight(learning_rate, y_train[i])
            pass
    
        def predict(self, x):
            return self.layers[0].calculate_output(x)
    
     
  • 相关阅读:
    命令行通配符教程
    无插件Vim配置文件vimrc推荐与各VIM配置项解释
    jquery.pagination.js分页插件的使用
    Alpha(4/10)
    Alpha(3/10)
    Alpha(2/10)
    Alpha(1/10)
    需求报告答辩
    项目UML设计
    项目选题报告答辩总结
  • 原文地址:https://www.cnblogs.com/txq157/p/7693179.html
Copyright © 2011-2022 走看看