题意:在[-a, a]*[-b, b]区域内随机取一个点P,求以(0, 0)和P为对角线的长方形面积大于S的概率(a,b>0, S>=0)。
分析:
1、若长方形面积>S,则选取的P(x,y)满足xy>S,xy=S是双曲线,P取双曲线上方,[-a, a]*[-b, b]区域内的某点则满足条件。
2、(双曲线上方,[-a, a]*[-b, b]区域内)这块区域的面积w/(a*b)则为答案。
3、面积w求法:ab - 双曲线下方面积(S + S*ln(a*b/S))。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 10000 + 10; const int MAXT = 10000 + 10; using namespace std; int main(){ int T; scanf("%d", &T); while(T--){ double a, b, S; scanf("%lf%lf%lf", &a, &b, &S); double m = a * b; if(S >= a * b){ printf("0.000000%%\n"); continue; } if(fabs(S) < eps){ printf("100.000000%%\n"); continue; } double ans = (m - S - S * log(m / S)) * 100 / m; printf("%.6lf%%\n", ans); } return 0; }