题意:求一个区间内,满足连续的奇数长度是偶数,连续的偶数长度是奇数的数的个数。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-9; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 20 + 10; const int MAXT = 10000 + 10; using namespace std; int digit[MAXN]; LL dp[MAXN][2][MAXN]; LL dfs(int pos, int pre, int len, bool leadingzero, bool limit){//pos--当前位,pre--更高一位的数是奇还是偶,len--连续长度,leadingzero--是否有前导零,limit--当前位的数字是否有限制 if(!pos) return (pre & 1) != (len & 1); if(!limit && dp[pos][pre][len] != -1) return dp[pos][pre][len]; LL ans = 0; int up = limit ? digit[pos] : 9; for(int i = 0; i <= up; ++i){ if(leadingzero){ if(i == 0){ ans += dfs(pos - 1, 0, 0, true, limit && i == up); } else{ ans += dfs(pos - 1, i & 1, 1, false, limit && i == up); } } else{ if(i & 1){ if(pre & 1){ ans += dfs(pos - 1, i & 1, len + 1, false, limit && i == up); } else{ if(len & 1){//若当前位是奇数,前一位是偶数,且已经有奇数长度的偶数,则可以继续延伸 ans += dfs(pos - 1, i & 1, 1, false, limit && i == up); } } } else{ if(pre & 1){ if(!(len & 1)){ ans += dfs(pos - 1, i & 1, 1, false, limit && i == up); } } else{ ans += dfs(pos - 1, i & 1, len + 1, false, limit && i == up); } } } } if(!limit) dp[pos][pre][len] = ans; return ans; } LL solve(LL x){ int cnt = 0; while(x){ digit[++cnt] = x % 10; x /= 10; } return dfs(cnt, 0, 0, true, true); } int main(){ int T; scanf("%d", &T); int kase = 0; memset(dp, -1, sizeof dp); while(T--){ LL L, R; scanf("%lld%lld", &L, &R); printf("Case #%d: %lld ", ++kase, solve(R) - solve(L - 1)); } return 0; }